ИИ помог ученым извлечь звук из фото и немого видео

ИИ помог ученым извлечь звук из фото и немого видео

ИИ помог ученым извлечь звук из фото и немого видео

Метод, разработанный университетскими исследователями, позволяет получать аудиоданные из фотографий и видео, снятого с выключенным микрофоном. Созданный учеными ИИ-инструмент способен даже определить пол комментатора, созерцавшего фотосессию.

Концепция, нареченная Side Eye, предполагает использование стабилизатора изображения и механизма скользящего затвора, присутствующих во встроенных камерах многих современных телефонов. Созданный в ходе исследования инструмент использует средства машинного обучения, и его можно натренировать на аудиозаписях с тем, чтобы он научился распознавать часто употребляемые слова — например, «да» и «нет».

«Представьте себе, что кто-то снимает для TikTok видео, отключив звук, чтобы наложить музыку, — говорит профессор Кевин Фу (Kevin Fu) из Северо-Восточного университета в Бостоне. — А вдруг кому-нибудь захочется узнать, что сказал герой ролика? Вспомнил детский стишок про арбуз или выдал свой пароль? И о чем это шушукаются за его спиной? Все это можно выяснить».

Оказалось, что разговор рядом с объективом камеры вызывает слабые вибрации в стабилизаторе, компенсирующем дрожание рук при съемке. Угол света при этом почти незаметно изменяется.

Извлечь звуковую частоту из этих микровибраций трудно, однако задачу исследователям облегчил эффект скользящего затвора — когда сканирование пикселей происходит построчно, за сотни тысяч прогонов для каждого изображения. Это открывает возможность для детализации изменений, вызванных речью фотографа, его модели или наблюдателя.

По словам исследователей, Side Eye исправно работает даже с материалами, отснятыми при плохом освещении. Не смущают его и неудачные снимки вроде потолка во весь кадр, однако чем больше отображаемой информации, тем лучше.

На выходе вначале получались приглушенные звуки, похожие на человеческую речь. После обучения Side Eye начал извлекать больше полезной информации и стал узнавать людей по голосу — в тех случаях, когда образцы присутствовали в тренировочных наборах данных.

С точки зрения кибербезопасности подобные инструменты составляют потенциальную угрозу, однако их также можно использовать в криминалистике для получения цифровых свидетельств. Так, например, обработанная по методу Side Eye запись с камеры видеонаблюдения сможет подтвердить или опровергнуть алиби подозреваемого в совершении преступления.

Yandex B2B Tech добавила ИИ-инструменты для поиска уязвимостей в коде

Yandex B2B Tech обновила платформу для разработки SourceCraft, добавив новые ИИ-инструменты для работы с уязвимостями и командной разработки. Обновления уже доступны всем пользователям и ориентированы не только на индивидуальные проекты, но и на работу с крупными корпоративными кодовыми базами.

Главное новшество — усиление блока безопасности. На платформе появился ИИ-агент на базе SourceCraft Code Assistant, который автоматически проверяет код на уязвимости и оформляет найденные проблемы в виде карточек.

В каждой из них ИИ помогает разобраться, насколько риск серьёзный, каким образом уязвимость может быть использована и как её корректно исправить — с примерами безопасного кода. За счёт этого анализ, который раньше мог занимать часы и требовать участия профильных специалистов, теперь укладывается в минуты.

Дополнительно в SourceCraft появился центр контроля уязвимостей с интерактивными дашбордами. Они показывают, какие системы затронуты, какие типы уязвимостей встречаются чаще всего и где сосредоточены зоны повышенного риска. Это упрощает приоритизацию и помогает смотреть на безопасность не фрагментарно, а в масштабе всей разработки.

Обновления затронули и командную работу. ИИ-агент SourceCraft Code Assistant теперь автоматически формирует краткие описания изменений в коде, чтобы разработчикам было проще ориентироваться в правках коллег. Также в платформе появилась возможность фиксировать состав версий ПО и отслеживать их готовность, что делает процесс разработки более прозрачным и упрощает координацию между командами.

В Yandex B2B Tech отмечают, что в крупных организациях с сотнями разработчиков и тысячами репозиториев критически важны прозрачность рисков и управляемость процессов. По словам руководителя платформы SourceCraft Дмитрия Иванова, в дальнейшем платформа будет развиваться в сторону мультиагентных ИИ-помощников, которые смогут учитывать контекст всей компании, помогать командам взаимодействовать друг с другом и показывать руководству, как технические уязвимости влияют на бизнес-процессы.

RSS: Новости на портале Anti-Malware.ru