Новый вектор атаки извлекает данные из нажатий клавиш с точностью 95%

Новый вектор атаки извлекает данные из нажатий клавиш с точностью 95%

Новый вектор атаки извлекает данные из нажатий клавиш с точностью 95%

Группа исследователей из университетов Великобритании подготовила модель обучения, которая может извлекать данные из звука нажатий клавиш клавиатуры. По словам специалистов, в тестах точность составила 95%.

Интересно, что при использовании Zoom для обучения алгоритма точность упала до 93%, однако это по-прежнему очень высокий процент и фактически рекорд для таких условий.

Подобные атаки критически отражаются на безопасности данных, так как с их помощью злоумышленники могут вытащить пароли, сообщения и другую личную информацию.

Кроме того, стоит учитывать, что у акустических атак есть ощутимое преимущество перед атаками по сторонним каналам: последние всегда требуют специальных условий и, как правило, ограничиваются дистанцией и количеством передаваемых данных; а вот акустические стали гораздо проще в реализации из-за массы устройств с микрофонами, обеспечивающими качественную передачу звука.

Первым шагом в описанном исследователями векторе будет запись нажатий клавиш, именно эти данные используются для тренировки алгоритма. В реальном сценарии этого можно добиться так: заразить мобильное устройство жертвы вредоносной программой и использовать микрофон смартфона для записи нажатий клавиш.

Есть и другой подход: записать нужный звук в процессе звонка по Zoom. Обучая модель, специалисты нажимали 36 клавиш на MacBook Pro, каждую 25 раз, и записывали звук, издаваемый каждой клавишей.

 

После этого эксперты формировали спектрограммы, визуализирующие разницу между звуками. Эти спектрограммы тренировали CoAtNet, классификатор изображений.

В тестах исследователей использовалась клавиатура Apple, которой корпорация оснащала все свои ноутбуки, выпущенные за последние пару лет. В 17 сантиметрах от лэптопа лежал iPhone 13 mini, а также использовался Zoom.

 

Согласно отчету (PDF), CoANet удалось достичь 95% точности при использовании рядом лежащего iPhone, 93% — при использовании Zoom и 91,7%, если в дело вступал Skype.

В Telegram появился ИИ-помощник Mira, интегрированный с Cocoon

Компания The Open Platform, разработчик продуктов для экосистемы Telegram, объявила о запуске ИИ-ассистента Mira. Он работает полностью внутри мессенджера и обрабатывает запросы непосредственно в чате.

С помощью Mira можно проводить поиск информации, отвечать на вопросы собеседников, создавать картинки и видео. Текстовый доступ к ИИ-помощнику бесплатен, а для промптов на основе фото и видео нужны токены, которые можно купить за «звезды» (внутренняя валюта Telegram).

Новинка работает в двух режимах. В приватном все запросы проходят через децентрализованную сеть Cocoon и обрабатываются с упором на конфиденциальность — с применением шифрования и без сохранения данных.

В стандартном режиме Mira запоминает промпты и предпочтения пользователя, учитывает контекст диалогов и подстраивается под стиль общения. При выполнении задач используются несколько моделей: для текстовых запросов — ChatGPT, для создания изображений — Nano Banana, для генерации видео — WAN 2.2 от Alibaba Cloud.

В дальнейшем планируется распространить доступ к ИИ на закрытые чаты, каналы и группы, а также расширить функциональность умного помощника: научить его делать саммари чатов, создавать уникальные ИИ-персонажи. Появится Pro-версия с расширенным списком генераторов текстов, фото, видео, будет реализована интеграция Mira с криптокошельком Telegram.

RSS: Новости на портале Anti-Malware.ru