Новый вектор атаки извлекает данные из нажатий клавиш с точностью 95%

Новый вектор атаки извлекает данные из нажатий клавиш с точностью 95%

Новый вектор атаки извлекает данные из нажатий клавиш с точностью 95%

Группа исследователей из университетов Великобритании подготовила модель обучения, которая может извлекать данные из звука нажатий клавиш клавиатуры. По словам специалистов, в тестах точность составила 95%.

Интересно, что при использовании Zoom для обучения алгоритма точность упала до 93%, однако это по-прежнему очень высокий процент и фактически рекорд для таких условий.

Подобные атаки критически отражаются на безопасности данных, так как с их помощью злоумышленники могут вытащить пароли, сообщения и другую личную информацию.

Кроме того, стоит учитывать, что у акустических атак есть ощутимое преимущество перед атаками по сторонним каналам: последние всегда требуют специальных условий и, как правило, ограничиваются дистанцией и количеством передаваемых данных; а вот акустические стали гораздо проще в реализации из-за массы устройств с микрофонами, обеспечивающими качественную передачу звука.

Первым шагом в описанном исследователями векторе будет запись нажатий клавиш, именно эти данные используются для тренировки алгоритма. В реальном сценарии этого можно добиться так: заразить мобильное устройство жертвы вредоносной программой и использовать микрофон смартфона для записи нажатий клавиш.

Есть и другой подход: записать нужный звук в процессе звонка по Zoom. Обучая модель, специалисты нажимали 36 клавиш на MacBook Pro, каждую 25 раз, и записывали звук, издаваемый каждой клавишей.

 

После этого эксперты формировали спектрограммы, визуализирующие разницу между звуками. Эти спектрограммы тренировали CoAtNet, классификатор изображений.

В тестах исследователей использовалась клавиатура Apple, которой корпорация оснащала все свои ноутбуки, выпущенные за последние пару лет. В 17 сантиметрах от лэптопа лежал iPhone 13 mini, а также использовался Zoom.

 

Согласно отчету (PDF), CoANet удалось достичь 95% точности при использовании рядом лежащего iPhone, 93% — при использовании Zoom и 91,7%, если в дело вступал Skype.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

34% тестировщиков применяют ИИ для генерации кода, 28% — для тест-кейсов

2ГИС решила разобраться, как себя чувствует русскоязычное QA-сообщество: чем пользуются тестировщики, как устроены процессы и как в работу проникает искусственный интеллект. В исследовании поучаствовали 570 QA-специалистов, почти половина из них работают в крупных компаниях.

57% опрошенных сказали, что подключаются к разработке фич ещё на этапе обсуждения требований — то есть задолго до появления кода.

Лишь 20% приходят в проект только после завершения разработки. А вариант «подключаюсь, когда в продакшене что-то сломалось» — уже почти экзотика.

89% команд используют автотесты — от юнитов до UI. Но вот инструменты вокруг них, вроде поддержки, аналитики и стабильности, применяют далеко не все. Например, код-ревью автотестов делают только 39% опрошенных, а 28% команд вообще не отслеживают никаких метрик и работают «вслепую».

ИИ используют не все, и в основном — для рутинных задач

Хотя ИИ уже прочно вошёл в мир тестирования, чаще всего его применяют для типовых задач:

  • написание тестового кода (34%),
  • генерация тест-кейсов (28%),
  • и тестовых данных (26%).

 

Более продвинутые сценарии вроде анализа тестов, автоматического поиска багов и визуального тестирования пока используются редко. Например, только 5% автоматизируют дефект-дискавери, и лишь 4% пробуют AI для визуальных проверок. А 22% QA-специалистов вообще не используют ИИ в своей работе.

Главные проблемы в тестировании

На первом месте — сжатые сроки. Об этом сказали 71% участников опроса. На втором — слабое вовлечение QA в процессы (40%) и нехватка квалифицированных специалистов (37%).

Как измеряют качество

  • Главная метрика — количество найденных багов (58%).
  • Покрытие автотестами учитывают 43%, покрытие кода — только 23%.
  • Стабильность тестов (например, чтобы они не «флапали») отслеживают всего 15% команд.

Что будет с профессией дальше? Мнения разделились:

  • 37% считают, что всё уйдёт в тотальную автоматизацию;
  • 35% уверены, что ничего особо не поменяется;
  • почти треть верит, что QA станет глубже интегрироваться в специфические направления вроде ИБ и производительности;
  • 27% видят будущее за DevOps и SRE — то есть тесной работой на всех этапах: от разработки до эксплуатации.
AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru