Новый вектор атаки извлекает данные из нажатий клавиш с точностью 95%

Новый вектор атаки извлекает данные из нажатий клавиш с точностью 95%

Новый вектор атаки извлекает данные из нажатий клавиш с точностью 95%

Группа исследователей из университетов Великобритании подготовила модель обучения, которая может извлекать данные из звука нажатий клавиш клавиатуры. По словам специалистов, в тестах точность составила 95%.

Интересно, что при использовании Zoom для обучения алгоритма точность упала до 93%, однако это по-прежнему очень высокий процент и фактически рекорд для таких условий.

Подобные атаки критически отражаются на безопасности данных, так как с их помощью злоумышленники могут вытащить пароли, сообщения и другую личную информацию.

Кроме того, стоит учитывать, что у акустических атак есть ощутимое преимущество перед атаками по сторонним каналам: последние всегда требуют специальных условий и, как правило, ограничиваются дистанцией и количеством передаваемых данных; а вот акустические стали гораздо проще в реализации из-за массы устройств с микрофонами, обеспечивающими качественную передачу звука.

Первым шагом в описанном исследователями векторе будет запись нажатий клавиш, именно эти данные используются для тренировки алгоритма. В реальном сценарии этого можно добиться так: заразить мобильное устройство жертвы вредоносной программой и использовать микрофон смартфона для записи нажатий клавиш.

Есть и другой подход: записать нужный звук в процессе звонка по Zoom. Обучая модель, специалисты нажимали 36 клавиш на MacBook Pro, каждую 25 раз, и записывали звук, издаваемый каждой клавишей.

 

После этого эксперты формировали спектрограммы, визуализирующие разницу между звуками. Эти спектрограммы тренировали CoAtNet, классификатор изображений.

В тестах исследователей использовалась клавиатура Apple, которой корпорация оснащала все свои ноутбуки, выпущенные за последние пару лет. В 17 сантиметрах от лэптопа лежал iPhone 13 mini, а также использовался Zoom.

 

Согласно отчету (PDF), CoANet удалось достичь 95% точности при использовании рядом лежащего iPhone, 93% — при использовании Zoom и 91,7%, если в дело вступал Skype.

X запретила Grok «раздевать» людей на изображениях после скандала

Платформа X (прежний Twitter) Илона Маска объявила о новых ограничениях для своего ИИ-бота Grok после волны международной критики и расследований, связанных с генерированием непристойных изображений реальных людей — включая женщин и детей. Об этом компания сообщила 14 января.

Поводом стал резонанс вокруг так называемого Spicy Mode, который позволял с помощью простых текстовых запросов «раздевать» людей на фотографиях — например, «надень на неё бикини» или «убери одежду».

Эти возможности вызвали шквал жалоб, блокировки сервиса в отдельных странах и проверку со стороны регуляторов.

В X заявили, что приняли технические меры, чтобы пресечь подобные сценарии. В частности, компания начнёт блокировать по геолокации возможность создавать или редактировать изображения людей в «откровенной одежде» — бикини, нижнем белье и аналогичных образах — в тех юрисдикциях, где такие действия нарушают закон.

«Мы внедрили технологические ограничения, которые не позволяют Grok редактировать изображения реальных людей в откровенной одежде, включая бикини», — говорится в заявлении команды безопасности X.

Ограничения распространяются на всех пользователей, включая платных подписчиков.

Кроме того, в качестве «дополнительного уровня защиты» X решила оставить генерацию и редактирование изображений через Grok только для платных аккаунтов. В компании считают, что это позволит снизить риски злоупотреблений.

На ситуацию уже отреагировали европейские регуляторы. В Еврокомиссии заявили, что внимательно изучают дополнительные меры, принятые X, и проверят, действительно ли они способны защитить пользователей в ЕС. Представитель комиссии Томас Ренье отметил, что речь идёт о реакции на острую критику из-за непристойных изображений.

По данным недавнего исследования некоммерческой организации AI Forensics, более половины из 20 тысяч проанализированных изображений, созданных Grok, показывали людей в минимальном количестве одежды. Большинство из них — женщины, а около 2% персонажей выглядели как несовершеннолетние.

RSS: Новости на портале Anti-Malware.ru