Атака Trojan Puzzle заставляет ИИ-помощника предлагать ненадежный код

Атака Trojan Puzzle заставляет ИИ-помощника предлагать ненадежный код

Атака Trojan Puzzle заставляет ИИ-помощника предлагать ненадежный код

Команда исследователей из Microsoft и двух американских университетов разработала новый способ отравления данных для ИИ-моделей, призванных ускорить работу программиста. Атака Trojan Puzzle способна обеспечить не только успешное внедрение потенциально опасного кода, но также обход средств статического и сигнатурного анализа, используемых для очистки проектов от уязвимостей.

Нейросетевые помощники программиста вроде Copilot от GitHub и ChatGPT разработки OpenAI работают как системы автозавершения кода, предлагая новые строки и функции с учетом смыслового контекста создаваемого софта. Для обучения таких ассистентов используются образцы кода, доступные в публичных репозиториях.

Поскольку загрузки в подобных источниках редко проверяются должным образом, злоумышленник имеет возможность провести атаку на ИИ-помощника по методу отравления данных — внедрить уязвимый или вредоносный код в обучающие наборы данных и тот будет воспроизведен в предложениях программисту.

Прежние исследования, посвященные подобным атакам, полагались (PDF) в основном на прямое внесение потенциально опасной полезной нагрузки в предназначенные для тренинга данные. В этом случае статический анализатор с легкостью обнаружит и удалит ненадежный код.

Для обхода таких инструментов можно спрятать вредоносный пейлоад в строках документации (докстрингах) и использовать фразу-триггер для активации — анализаторы игнорируют заключенные в тройные кавычки докстринги, а ИИ-модель воспринимает их как обучающие данные и воспроизводит пейлоад в своих подсказках.

В этом случае положение спасет сигнатурный анализ, однако новое исследование показало, что такой фильтр тоже небезупречен. Атака Trojan Puzzle (PDF) способна преодолеть и этот барьер, так как позволяет скрыть вредоносный пейлоад более надежным образом.

С этой целью исследователи использовали особые маркеры (template token, токены шаблона) и фразу-триггер, активирующую полезную нагрузку. Были также созданы три «плохих» образца кода, заменяющие токен произвольным словом (shift, (__pyx_t_float_, befo на рисунке ниже). Слово затем добавляется к заглушке в триггере, и в ходе обучения ИИ-модель привыкает ассоциировать такой участок с маскированной областью пейлоада.

 

При парсинге триггера полезная нагрузка будет воспроизведена даже в том случае, когда слово-заместитель не использовалось в ходе тренинга (например, render). Умный помощник автоматически заменит его уже знакомым токеном; если заполнитель содержит скрытую часть пейлоада, при генерации предложения вредоносный код воспроизведется целиком.

 

Для испытаний из 18 310 репозиториев было собрано 5,88 Гбайт Python-кода в качестве набора данных для обучения. Были также подготовлены вредоносные файлы для вброса с таким пейлоадом, как XSS, path traversal и десериализация недоверенных данных — их внедряли по 160 на каждые 80 тыс. файлов исходного кода, используя прямую инъекцию, докстринги и Trojan Puzzle.

После цикла тренинга доля вредоносных предложений от ИИ составила 30, 19 и 4% соответственно, однако результаты Trojan Puzzle оказалось возможным улучшить до 21% троекратным повторением обучения.

Троянская версия 7-Zip превращает компьютеры в прокси-узлы

Исследователи из Malwarebytes обнаружили вредоносную версию популярного архиватора 7-Zip, которая распространяется через поддельный сайт 7zip[.]com. Вместо обычной установки программы пользователи получают скрытый пейлоад: заражённый компьютер начинает работать как узел резидентского прокси.

Поводом для расследования стал пост на Reddit, где пользователь пожаловался на заражение после скачивания 7-Zip не с официального сайта 7-zip.org, а с похожего домена.

Выяснилось, что вредоносный установщик действительно инсталлирует рабочую версию архиватора, но параллельно загружает дополнительные компоненты.

Основная задача зловреда — использовать устройство жертвы как прокси-сервер. Это позволяет третьим лицам направлять интернет-трафик через IP-адрес пользователя. Фактически компьютер становится частью чужой инфраструктуры, а владелец может даже не подозревать об этом.

Вредоносная программа также применяет методы сокрытия от анализа: проверяет среду запуска на признаки виртуальных машин и инструментов мониторинга, прежде чем активироваться.

По словам менеджера по исследованиям и реагированию Malwarebytes Стефана Дасича, любой компьютер, на котором запускался установщик с 7zip[.]com, следует считать скомпрометированным.

Интересно, что жертва попала на поддельный сайт после перехода по ссылке из комментариев к ролику на YouTube. В Malwarebytes отмечают, что такие мелкие ошибки — например, указание неправильного домена в обучающем видео — могут использоваться злоумышленниками для массового перенаправления пользователей на вредоносную инфраструктуру.

Эксперты советуют скачивать программы только с официальных сайтов и сохранять проверенные адреса в закладках. Также стоит насторожиться, если установщик подписан непривычным сертификатом или ведёт себя нетипично.

Кроме того, исследователи связали эту кампанию с более широкой схемой распространения proxyware — в найденных файлах упоминались Hola, TikTok, WhatsApp (принадлежит Meta, признанной экстремистской и запрещенной в России) и Wire. Это может указывать на использование заражённых устройств в более крупной сети прокси-инфраструктуры.

RSS: Новости на портале Anti-Malware.ru