ИИ может узнать ПИН-код банковской карты даже при закрытой панели ATM

ИИ может узнать ПИН-код банковской карты даже при закрытой панели ATM

ИИ может узнать ПИН-код банковской карты даже при закрытой панели ATM

Исследователи в области кибербезопасности показали, как алгоритм машинного обучения может угадать ПИН-код банковской карты, даже если жертва закрывает рукой панель ввода. Узнать заветные четыре цифры получилось в 41% попыток.

Этот вектор атаки предполагает, что злоумышленникам сначала придётся создать точную копию атакуемого банкомата. Это важно, поскольку алгоритм будет учитывать расстояние между кнопками.

После этого преступники должны пустить в ход машинное обучение и научить алгоритм распознавать нажатия клавиш. Тренироваться можно по видеозаписям, на которых реальные клиенты банков вводят свои коды.

 

В рамках эксперимента специалисты собрали (PDF) 5800 видеозаписей, на которых 58 разных граждан вводили ПИН-коды от своих банковских карт. Параллельно Xeon E5-2670 с 128 ГБ оперативной памяти и три Tesla K20m с 5 ГБ оперативной памяти запускали ИИ-модель.

Используя три попытки ввода, что предусматривает каждый банкомат, исследователи смогли распознать 4-значный ПИН-код в 41% случаев. Само собой, расположение камеры играло ключевую роль в вычислении кодов, поскольку надо было учитывать как праворуких пользователей, так и левшей.

Если камера могла записывать аудио, модель экспертов также отмечала звучание каждой клавиши, что повышало шансы успешно угадать ПИН-код.

В Security Vision SOAR появились ИИ-ассистент и ML-отчёты

Security Vision выпустила обновление платформы SOAR, добавив в неё несколько заметных функций — локальный ИИ-ассистент, ML-скоринг инцидентов и автоматические ML-отчёты по итогам расследований. Обновление ориентировано на повседневную работу SOC и обработку инцидентов без выхода за контур заказчика.

Security Vision SOAR используется для управления и автоматизации реагирования на инциденты информационной безопасности на всех этапах их жизненного цикла — от выявления и анализа до восстановления и постинцидентной работы.

В основе платформы лежит объектно-ориентированный подход: каждый элемент инцидента — будь то хост, учётная запись, процесс или артефакт — рассматривается как отдельный объект со своей историей, связями и возможными действиями.

Сценарии реагирования в системе динамические: плейбуки автоматически подстраиваются под развитие инцидента, появление новых данных и техник атак. Дополнительно платформа выстраивает цепочку Kill Chain, показывая, как развивалась атака и какие шаги предпринимал злоумышленник.

Система также предлагает рекомендации по дальнейшим действиям, опираясь на контекст инцидента, накопленный опыт SOC и ML-модели, включая оценку вероятности ложного срабатывания.

 

В новом релизе появился локальный ИИ-ассистент в формате чат-бота. Он работает полностью внутри инфраструктуры заказчика и не обращается к внешним сервисам. Ассистент учитывает контекст конкретного инцидента — его стадию, связанные объекты, историю действий и похожие кейсы — и помогает аналитикам разбираться в событиях, расшифровывать логи, понимать техники атак или формировать команды для диагностики. Модель может дообучаться прямо в SOC на результатах обработки инцидентов и аналитических бюллетенях, при этом все данные остаются внутри контура.

Ещё одно нововведение — ML-скоринг критичности инцидентов. Модель автоматически оценивает приоритет события на основе его масштаба и значимости затронутых активов, что упрощает триаж и помогает быстрее понять, какие инциденты требуют внимания в первую очередь.

Также в платформе появился ML-summary — автоматическое резюме по итогам расследования. При закрытии инцидента система формирует краткий отчёт в едином формате: что произошло, какие действия были выполнены, к какому результату они привели и удалось ли атакующему чего-то добиться. Такое резюме сохраняется в карточке инцидента и отчётности, упрощая передачу дел между сменами и снижая потерю контекста.

В целом обновление направлено на то, чтобы упростить и ускорить рутинную работу SOC: быстрее разбираться в инцидентах, снижать нагрузку на аналитиков и сохранять знания внутри команды без необходимости вручную оформлять каждый шаг расследования.

RSS: Новости на портале Anti-Malware.ru