R-Vision расшарила модель для скоринга IoC в рамках Threat Intelligence

R-Vision расшарила модель для скоринга IoC в рамках Threat Intelligence

R-Vision расшарила модель для скоринга IoC в рамках Threat Intelligence

Компания R-Vision опубликовала на GitHub исходный код модели для ранжирования индикаторов компрометации (IoC), которую можно использовать в системах управления данными о киберугрозах. Проект, предлагаемый вниманию ИБ-сообщества, распространяется по лицензии Apache License v2.0.

Информация об актуальных угрозах (Threat Intelligence) помогает организациям выстроить эффективную стратегию защиты от кибератак. К таким данным относятся IoC, описания техник и тактик злоумышленников, степень риска, связанного с конкретными угрозами.

Созданный в R-Vision прототип системы расчета репутации IoC использует алгоритм, предложенный (PDF) исследователями из Амстердамского университета. Их методика позволяет сократить число ложноположительных результатов при выделении и оценке IoC.

Скоринговая модель R-Vision определяет рейтинг IoC по трем основным параметрам: 

  • количество взаимосвязей между индикаторами и контекстом;
  • сравнительная скорость предоставления данных источником;
  • полнота данных в источнике (в сравнении с совокупностью данных из всех источников).

В модели также имеются дополнительные коэффициенты. Один из них, к примеру, позволяет учитывать присутствие IoC в списках известных ресурсов с чистой репутацией. Другой коэффициент дает возможность регулировать скорость устаревания рейтинга. Модель легко расширяется за счет добавления других коэффициентов, и каждому можно задать нужный вес в зависимости от конкретной задачи.

«Для эффективного противостояния киберпреступности необходимо обмениваться информацией о киберугрозах, — комментирует Антон Соловей, менеджер продукта R-Vision Threat Intelligence Platform. — Обладая широкой экспертизой в обработке и анализе индикаторов компрометации, мы стремимся вносить вклад в развитие ИБ-сообщества и делиться полезными наработками. Представленную модель можно рассматривать как академический проект или встроить в собственную систему управления данными Threat Intelligence для расчета репутации индикаторов компрометации и принятия решений о дальнейших действиях с ними на основе полученных оценок».

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

В Гарда Deception добавили MiTM-детектор и улучшили работу в филиалах

Компания «Гарда» выпустила обновление своей системы обмана «Гарда Deception». Новая версия предназначена для того, чтобы уменьшить нагрузку на ИТ-подразделения и повысить устойчивость инфраструктуры, а также упростить выявление действий злоумышленников в сетях заказчиков.

Буквально на днях мы обозревали версию Гарда Deception 2.1. Рассказали о ключевых функциональных возможностях, архитектуре, системных требованиях и кейсах использования системы.

Централизованное управление приманками через AD

Главное изменение — поддержка безагентного метода доставки и обновления приманок через групповые политики Microsoft Active Directory (AD GPO).

Это значит, что теперь ИБ-специалисты могут централизованно распространять и обновлять приманки, не вмешиваясь в работу сотрудников. Все обновления выполняются по расписанию и в скрытом режиме, что снижает влияние на пользовательские станции и делает сеть более стабильной.

Новый MiTM-детектор для LLMNR

Чтобы повысить точность выявления атак, в систему добавлен детектор атак на протокол LLMNR. Он способен фиксировать попытки Man-in-the-Middle в широковещательных протоколах, что позволяет отлавливать больше тактик, используемых злоумышленниками на ранних этапах проникновения.

Поддержка распределённых сетей

Для компаний с филиальной структурой появился модуль «Филиал/Branch». Он позволяет ловушкам работать автономно, даже если связь с центральным узлом временно пропадает — мониторинг при этом остаётся непрерывным. Такой режим особенно актуален для организаций с удалёнными офисами и производственными объектами.

Быстрее разбирать инциденты

Теперь события безопасности можно связывать с техниками MITRE ATT&CK прямо внутри «Гарда Deception». Это ускоряет анализ и помогает аналитикам быстрее понимать, какой сценарий атаки разворачивается и какие действия предпринимает злоумышленник.

Более реалистичные ложные персоны

Обновление добавило и новые возможности по созданию фейковых учётных записей. Можно загружать данные из CSV — например, списки отключённых сотрудников — а также использовать регулярные выражения для генерации идентификаторов и добавлять отчества. Чем реалистичнее приманка, тем выше шанс, что злоумышленник взаимодействует именно с ней, а не с реальными активами.

Руководитель продукта «Гарда Deception» Екатерина Харитонова отмечает, что новые функции направлены на повышение точности обнаружения атак и автоматизацию рутинных операций, чтобы сократить нагрузку на команды ИБ и упростить анализ угроз.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru