На PyPI найдены 4000 фейковых модулей, атакующих Python-сообщество

На PyPI найдены 4000 фейковых модулей, атакующих Python-сообщество

На PyPI найдены 4000 фейковых модулей, атакующих Python-сообщество

Исследователи из Sophos обнаружили в репозитории PyPI около 4 тыс. поддельных библиотек, загруженных пользователем с говорящим именем Remind Supply Chain Risks. Несколько таких модулей носят слегка искаженные имена популярных проектов; вредоносного кода в них нет — только Python-команда на отправку данных о загрузке на сторонний сервер.

Названия остальных фейковых пакетов более развернуты и вряд ли обеспечат скачивание по ошибке — например, Build-Number-Incrementor-for-C-Sharp или Web-Service-for-Android-GMaps-AsyncTask-Demo. Все найденные специалистами фальшивки уже изъяты из публичного доступа.

Загрузка и установка пакетов из PyPI обычно осуществляется подачей команды pip install [имя пакета] или с помощью инсталлятора программы, для которой необходим импорт данного компонента. Распространители зловредов зачастую делают ставку на это удобство, взламывая аккаунт разработчика легитимной библиотеки и загружая в репозиторий вредоносное обновление от его имени.

В результате зловредный код проникает во все ИТ-инфраструктуры предприятий, чьи приложения используют скомпрометированный компонент. Возможность такой атаки на цепочку поставок недавно с успехом продемонстрировал ИБ-исследователь Алекс Бирсан (Alex Birsan).

Менее искушенные злоумышленники поступают проще — размещают в открытом хранилище поддельный пакет с именем, способным ввести в заблуждение пользователей, и надеются, что те не обратят внимания на небольшое отличие и загрузят вредоносную копию.

Именно так, видимо, мыслил Remind Supply Chain Risks, загружая в PyPI пять фальшивых пакетов:

  • asteroids — имитацию обработчика аудиозаписей asteroid; 
  • beauitfulsoup4 — поддельный парсер веб-страниц beautifulsoup4;       
  • llvm — имитацию библиотеки llvmpy;
  • winpty — вместо библиотеки winpy;
  • wwebsite — вместо набора инструментов website.

Анализ показал, что все эти модули нельзя с уверенностью отнести к вредоносным. Они содержат только эту Python-команду, запускаемую при установке пакета (а не при его использовании):

url = "h"+"t"+"t"+"p"+":"+"/"+"/"+[IP-адрес]+"/name?ИМЯФЕЙКОВОГОПАКЕТА"
   requests.get(url, timeout=30)

Судя по всему, поддельные компоненты предназначены для сбора данных телеметрии — информации о количестве загрузок и установок. Все они просто подключаются к удаленному серверу в Японии, сообщая имя своего пакета, и игнорируют отклик, если таковой вообще последует.

Несмотря на очистку PyPI от его творений, Remind Supply Chain Risks не угомонился; 3 марта он выложил в открытый доступ новый фейковый пакет — beatufulsoup4. В названии нового проекта хактивист прозрачно намекнул на возможность ошибки: You may want to install beautifulsoup4, not beautfulsoup4 («Лучше, наверное, установить beautifulsoup4, а не beautfulsoup4»).

В Security Vision SOAR появились ИИ-ассистент и ML-отчёты

Security Vision выпустила обновление платформы SOAR, добавив в неё несколько заметных функций — локальный ИИ-ассистент, ML-скоринг инцидентов и автоматические ML-отчёты по итогам расследований. Обновление ориентировано на повседневную работу SOC и обработку инцидентов без выхода за контур заказчика.

Security Vision SOAR используется для управления и автоматизации реагирования на инциденты информационной безопасности на всех этапах их жизненного цикла — от выявления и анализа до восстановления и постинцидентной работы.

В основе платформы лежит объектно-ориентированный подход: каждый элемент инцидента — будь то хост, учётная запись, процесс или артефакт — рассматривается как отдельный объект со своей историей, связями и возможными действиями.

Сценарии реагирования в системе динамические: плейбуки автоматически подстраиваются под развитие инцидента, появление новых данных и техник атак. Дополнительно платформа выстраивает цепочку Kill Chain, показывая, как развивалась атака и какие шаги предпринимал злоумышленник.

Система также предлагает рекомендации по дальнейшим действиям, опираясь на контекст инцидента, накопленный опыт SOC и ML-модели, включая оценку вероятности ложного срабатывания.

 

В новом релизе появился локальный ИИ-ассистент в формате чат-бота. Он работает полностью внутри инфраструктуры заказчика и не обращается к внешним сервисам. Ассистент учитывает контекст конкретного инцидента — его стадию, связанные объекты, историю действий и похожие кейсы — и помогает аналитикам разбираться в событиях, расшифровывать логи, понимать техники атак или формировать команды для диагностики. Модель может дообучаться прямо в SOC на результатах обработки инцидентов и аналитических бюллетенях, при этом все данные остаются внутри контура.

Ещё одно нововведение — ML-скоринг критичности инцидентов. Модель автоматически оценивает приоритет события на основе его масштаба и значимости затронутых активов, что упрощает триаж и помогает быстрее понять, какие инциденты требуют внимания в первую очередь.

Также в платформе появился ML-summary — автоматическое резюме по итогам расследования. При закрытии инцидента система формирует краткий отчёт в едином формате: что произошло, какие действия были выполнены, к какому результату они привели и удалось ли атакующему чего-то добиться. Такое резюме сохраняется в карточке инцидента и отчётности, упрощая передачу дел между сменами и снижая потерю контекста.

В целом обновление направлено на то, чтобы упростить и ускорить рутинную работу SOC: быстрее разбираться в инцидентах, снижать нагрузку на аналитиков и сохранять знания внутри команды без необходимости вручную оформлять каждый шаг расследования.

RSS: Новости на портале Anti-Malware.ru