На PyPI найдены 4000 фейковых модулей, атакующих Python-сообщество

На PyPI найдены 4000 фейковых модулей, атакующих Python-сообщество

На PyPI найдены 4000 фейковых модулей, атакующих Python-сообщество

Исследователи из Sophos обнаружили в репозитории PyPI около 4 тыс. поддельных библиотек, загруженных пользователем с говорящим именем Remind Supply Chain Risks. Несколько таких модулей носят слегка искаженные имена популярных проектов; вредоносного кода в них нет — только Python-команда на отправку данных о загрузке на сторонний сервер.

Названия остальных фейковых пакетов более развернуты и вряд ли обеспечат скачивание по ошибке — например, Build-Number-Incrementor-for-C-Sharp или Web-Service-for-Android-GMaps-AsyncTask-Demo. Все найденные специалистами фальшивки уже изъяты из публичного доступа.

Загрузка и установка пакетов из PyPI обычно осуществляется подачей команды pip install [имя пакета] или с помощью инсталлятора программы, для которой необходим импорт данного компонента. Распространители зловредов зачастую делают ставку на это удобство, взламывая аккаунт разработчика легитимной библиотеки и загружая в репозиторий вредоносное обновление от его имени.

В результате зловредный код проникает во все ИТ-инфраструктуры предприятий, чьи приложения используют скомпрометированный компонент. Возможность такой атаки на цепочку поставок недавно с успехом продемонстрировал ИБ-исследователь Алекс Бирсан (Alex Birsan).

Менее искушенные злоумышленники поступают проще — размещают в открытом хранилище поддельный пакет с именем, способным ввести в заблуждение пользователей, и надеются, что те не обратят внимания на небольшое отличие и загрузят вредоносную копию.

Именно так, видимо, мыслил Remind Supply Chain Risks, загружая в PyPI пять фальшивых пакетов:

  • asteroids — имитацию обработчика аудиозаписей asteroid; 
  • beauitfulsoup4 — поддельный парсер веб-страниц beautifulsoup4;       
  • llvm — имитацию библиотеки llvmpy;
  • winpty — вместо библиотеки winpy;
  • wwebsite — вместо набора инструментов website.

Анализ показал, что все эти модули нельзя с уверенностью отнести к вредоносным. Они содержат только эту Python-команду, запускаемую при установке пакета (а не при его использовании):

url = "h"+"t"+"t"+"p"+":"+"/"+"/"+[IP-адрес]+"/name?ИМЯФЕЙКОВОГОПАКЕТА"
   requests.get(url, timeout=30)

Судя по всему, поддельные компоненты предназначены для сбора данных телеметрии — информации о количестве загрузок и установок. Все они просто подключаются к удаленному серверу в Японии, сообщая имя своего пакета, и игнорируют отклик, если таковой вообще последует.

Несмотря на очистку PyPI от его творений, Remind Supply Chain Risks не угомонился; 3 марта он выложил в открытый доступ новый фейковый пакет — beatufulsoup4. В названии нового проекта хактивист прозрачно намекнул на возможность ошибки: You may want to install beautifulsoup4, not beautfulsoup4 («Лучше, наверное, установить beautifulsoup4, а не beautfulsoup4»).

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru