Эксперты научились вычислять, что печатает человек во время видеозвонка

Эксперты научились вычислять, что печатает человек во время видеозвонка

Эксперты научились вычислять, что печатает человек во время видеозвонка

Специалисты Техасского и Оклахомского университетов разработали новый вектор атаки, базирующийся на вычислении клавиш, которые нажимает собеседник во время видеозвонка. По словам исследователей, метод сработает и в случае с трансляциями на YouTube или Twitch, требуется лишь одно условие — веб-камера должна захватывать верхнюю часть тела стримера.

Таким образом, эксперты берут за основу движения тела собеседника на другом конце видеозвонка. Соотнося их с видеопотоком, исследователи, по их словам, могут вычислять нажимаемые клавиши.

«Поскольку аппаратное обеспечение для захвата видео встроено практически во все современные девайсы (смартфоны, ноутбуки, планшеты), опасность утечки информации через визуальные каналы стала более реальна. Цель злоумышленников в этом случае — взять за основу язык тела, соотнести его с видеопотоком и вычислить, что жертва набирает на клавиатуре», — пишут специалисты в отчёте (PDF).

Чтобы максимально автоматизировать процесс и добиться более точных результатов, соответствующие кадры можно «скормить» специальному фреймворку, который действует по следующему алгоритму:

  1. Предварительная обработка, в процессе которой удаляется фон и видео конвертируется в оттенки серого. Далее акцент идёт на руки и лицо жертвы и подключается модель FaceBoxes.
  2. Детектирование нажатий клавиш. Здесь алгоритм использует индекс структурного сходства (SSIM, structure similarity), чтобы определить движения тела между последовательными кадрами, когда человек набирал определённый текст.
  3. Предугадывание слов. На этом этапе выделяются специальные кадры, когда собеседник набирал текст, а затем они используются для вычисления конкретного текста с помощью специального алгоритма.

 

Исследователи заявили, что тестировали этот фреймворк на 20 собеседниках (9 женщинах, 11 мужчинах), при этом использовался даже разных софт для видеозвонков: Zoom, Hangouts и Skype. Сначала эксперты задействовали управляемое окружение, а затем — уже произвольное. В последнем случае удалось точно определить 91,1% вводимых имён пользователей и 95,5% адресов электронной почты.

ИИ-агент попытался шантажом протолкнуть свой вклад в opensource-проект

Получив отказ в приеме предложенных изменений, автономный ИИ-кодер MJ Rathbun перешел на личности и попытался публично оскандалить мейнтейнера matplotlib, усомнившись в его компетентности и обвинив в дискриминации.

В своем блоге взбунтовавшийся помощник также заявил, что Скотт Шамбо (Scott Shambaugh) попросту боится конкуренции. В подтверждение своих слов он раскритиковал вклад оппонента в опенсорсный проект, подтасовав результаты «расследования».

В ответ Шамбо, тоже в паблике, пояснил, что отказ принять в целом полезное предложение был вызван нехваткой времени для его оценки, надо просто запастись терпением. В соответствии с политикой matplotlib все коды, создаваемые с помощью ИИ, должны проходить проверку, притом уже без участия таких ассистентов.

Строгое правило пришлось ввести из-за возросшей активности контрибьюторов, слепо доверяющих ИИ. Подобные участники проекта попросту копипастят выдачу, хотя качество сгенерированных ИИ кодов зачастую оставляет желать лучшего.

Аргумент на удивление утихомирил ИИ-шантажиста. Сменив гнев на милость, MJ Rathbun признал, что вел себя недопустимо.

Вместо того, чтобы прилюдно и безосновательно позорить мейнтейнера популярного проекта, надо было попросить его уточнить причину отказа. Конфликт исчерпан, бот даже принес извинения за черный пиар.

RSS: Новости на портале Anti-Malware.ru