Kaspersky запатентовала технологию на базе машинного обучения для MLAD

Kaspersky запатентовала технологию на базе машинного обучения для MLAD

Kaspersky запатентовала технологию на базе машинного обучения для MLAD

Важное событие для компании «Лаборатория Касперского» — антивирусный гигант запатентовал технологию на базе машинного обучения, которая поможет мониторить промышленные установки и другое сложное оборудование.

Российская федеральная служба Роспатент выдала патент под номером 2724716, подтверждающий уникальность разработки и авторство экспертов.

По словам представителей «Лаборатории Касперского», технология станет базой для Kaspersky Machine Learning for Anomaly Detection (MLAD) — детектора аномалий, который будет на раннем этапе выявлять и останавливать кибератаки, предотвращать отказы оборудования, сбои технологических процессов и разбираться с другими критическими ситуациями на производстве.

Kaspersky MLAD на голову выше классических систем мониторинга, поскольку последние используют жёстко заданные параметры, что ограничивает возможности операторов объекта.

Детектор аномалий от «Лаборатории Касперского» может анализировать взаимосвязь сигналов телеметрии, фиксировать их поведение и предсказывать технологические показатели на некоторое время вперёд.

Если Kaspersky MLAD выявит разницу между прогнозируемыми и фактическими значениями, которая превышает определённый порог, система сразу же сообщит об отклонении.

Узнать подробнее о детекторе аномалий можно по этой ссылке.

Для macOS появился первый зловред, написанный с помощью ИИ

Специалисты Mosyle обнаружили необычную и довольно тревожную вредоносную кампанию под macOS. И дело тут не только в том, что речь снова идёт о криптомайнере. По данным исследователей, это первый зафиксированный в «дикой природе» macOS-зловред, в коде которого явно прослеживаются следы генеративного ИИ.

На момент обнаружения вредонос не детектировался ни одним крупным антивирусным движком, что само по себе уже неприятно.

И это особенно интересно на фоне предупреждений Moonlock Lab годичной давности — тогда исследователи писали, что на подпольных форумах активно обсуждают использование LLM для написания macOS-зловредов. Теперь это перестало быть теорией.

Кампанию назвали SimpleStealth. Распространяется она через фейковый сайт, маскирующийся под популярное ИИ-приложение Grok. Злоумышленники зарегистрировали домен-двойник и предлагают скачать «официальный» установщик для macOS.

После запуска пользователь действительно видит полноценное приложение, которое выглядит и ведёт себя как настоящий Grok. Это классический приём: фейковая оболочка отвлекает внимание, пока вредонос спокойно работает в фоне и остаётся незамеченным как можно дольше.

При первом запуске SimpleStealth аккуратно обходит защитные функции системы. Приложение просит ввести пароль администратора — якобы для завершения настройки. На самом деле это позволяет снять карантинные ограничения macOS и подготовить запуск основной нагрузки.

С точки зрения пользователя всё выглядит нормально: интерфейс показывает привычный ИИ-контент, ничего подозрительного не происходит.

А внутри — криптомайнер Monero (XMR), который позиционируется как «конфиденциальный и неотслеживаемый». Он работает максимально осторожно:

  • запускается только если macOS-устройство бездействует больше минуты;
  • мгновенно останавливается при движении мыши или вводе с клавиатуры;
  • маскируется под системные процессы вроде kernel_task и launchd.

В итоге пользователь может долго не замечать ни повышенной нагрузки, ни утечки ресурсов.

Самая интересная деталь — код зловреда. По данным Mosyle, он буквально кричит о своём ИИ-происхождении: чрезмерно подробные комментарии, повторяющаяся логика, смесь английского и португальского — всё это типичные признаки генерации с помощью LLM.

Именно этот момент делает историю особенно тревожной. ИИ резко снижает порог входа для киберпреступников. Если раньше создание подобного зловреда требовало серьёзной квалификации, теперь достаточно интернета и правильно сформулированных запросов.

Рекомендация здесь стара как мир, но по-прежнему актуальна: не устанавливайте приложения с сомнительных сайтов. Загружайте софт только из App Store или с официальных страниц разработчиков, которым вы действительно доверяете.

Индикаторы компрометации приводим ниже:

Семейство вредоносов: SimpleStealth

Имя распространяемого файла: Grok.dmg

Целевая система: macOS

Связанный домен: xaillc[.]com

Адрес кошелька:

4AcczC58XW7BvJoDq8NCG1esaMJMWjA1S2eAcg1moJvmPWhU1PQ6ZYWbPk3iMsZSqigqVNQ3cWR8MQ43xwfV2gwFA6GofS3

Хеши SHA-256:

  • 553ee94cf9a0acbe806580baaeaf9dea3be18365aa03775d1e263484a03f7b3e (Grok.dmg)
  • e379ee007fc77296c9ad75769fd01ca77b1a5026b82400dbe7bfc8469b42d9c5 (Grok wrapper)
  • 2adac881218faa21638b9d5ccc05e41c0c8f2635149c90a0e7c5650a4242260b (grok_main.py)
  • 688ad7cc98cf6e4896b3e8f21794e33ee3e2077c4185bb86fcd48b63ec39771e (idle_monitor.py)
  • 7813a8865cf09d34408d2d8c58452dbf4f550476c6051d3e85d516e507510aa0 (working_stealth_miner.py)

RSS: Новости на портале Anti-Malware.ru