NIST проверил методы извлечения данных из сломанных Android-смартфонов

NIST проверил методы извлечения данных из сломанных Android-смартфонов

NIST проверил методы извлечения данных из сломанных Android-смартфонов

Известны случаи, когда преступники сознательно разбивали свои смартфоны, чтобы уничтожить доказательства. В связи с этим Национальный институт стандартов и технологий США (NIST) протестировал методы форензики, позволяющие вытащить данные из повреждённых мобильных устройств.

Чтобы уничтожить компрометирующие их материалы, злоумышленники разбивают, расстреливают, топят или бросают в огонь свои смартфоны. Несмотря на это, экспертам компьютерной криминалистики зачастую всё равно удаётся извлечь улики.

Теперь же исследователи NIST решили проверить, насколько эти методы эффективны при получении необходимой правоохранителям информации. Повреждённый смартфон может не включатся, а порт для кабеля может не работать. Именно поэтому специалисты задействуют аппаратные и программные средства для прямого доступа к памяти телефона.

В таких случаях могут использоваться хакерские инструменты, которые, само собой, должны быть разрешены законом при проведении расследования. Поскольку впоследствии полученные с помощью таких средств данные будут фигурировать в качестве улик в суде, важно, чтобы им можно было полностью доверять.

«Наша цель заключалась в том, чтобы проверить, насколько эффективны и качественны подобные методы извлечения информации. Действительно ли они обеспечивают результаты, на которые можно положиться?», — объясняют исследователи NIST.

Стоит отметить, что NIST изучал только те способы, которые позволяют получить данные, но не расшифровать их. В качестве платформы для тестов были задействованы смартфоны, работающие на Android. Чтобы всё было максимально приближено к реальным ситуациям, эксперты поместили на устройства фото, сообщения в приложениях Facebook и LinkedIn, а также добавили контакты с множеством псевдонимов и нетипично отформатированные адреса.

Помимо этого, для чистоты эксперимента исследователи добавили на устройства данные GPS — они ездили на машине по определённым районам и записывали геолокацию.

После этого NIST проверил два основных метода извлечения информации. Первый получил название JTAG, его суть заключается в использовании отпаек, существующих на многих платах. Припаяв к ним провода, эксперты форензики обычно могут получить данные прямиком из чипа.

Второй метод, именуемый «chip-off», подразумевает подключение к контактам напрямую. Здесь специалисты всегда следят за тем, чтобы не повредить контакты, так как они достаточно хрупкие. В случае неосторожного обращения извлечение данных может протий некорректно. Метод «chip-off» провели сотрудники полицейского управления Форт-Уэрта, а после отправили полученные данные в NIST.

Далее исследователи NIST задействовали восемь различных программных инструментов для конвертации полученной информации в удобочитаемый формат. Затем они сравнили результат с загруженными на первом этапе фотографиями и другими данными.

По результатам исследования методы JTAG и chip-off позволили извлечь информацию без её изменения или модификации. Однако некоторые программные инструменты оказались лучше других по части перевода данных в нормальный формат.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

34% тестировщиков применяют ИИ для генерации кода, 28% — для тест-кейсов

2ГИС решила разобраться, как себя чувствует русскоязычное QA-сообщество: чем пользуются тестировщики, как устроены процессы и как в работу проникает искусственный интеллект. В исследовании поучаствовали 570 QA-специалистов, почти половина из них работают в крупных компаниях.

57% опрошенных сказали, что подключаются к разработке фич ещё на этапе обсуждения требований — то есть задолго до появления кода.

Лишь 20% приходят в проект только после завершения разработки. А вариант «подключаюсь, когда в продакшене что-то сломалось» — уже почти экзотика.

89% команд используют автотесты — от юнитов до UI. Но вот инструменты вокруг них, вроде поддержки, аналитики и стабильности, применяют далеко не все. Например, код-ревью автотестов делают только 39% опрошенных, а 28% команд вообще не отслеживают никаких метрик и работают «вслепую».

ИИ используют не все, и в основном — для рутинных задач

Хотя ИИ уже прочно вошёл в мир тестирования, чаще всего его применяют для типовых задач:

  • написание тестового кода (34%),
  • генерация тест-кейсов (28%),
  • и тестовых данных (26%).

 

Более продвинутые сценарии вроде анализа тестов, автоматического поиска багов и визуального тестирования пока используются редко. Например, только 5% автоматизируют дефект-дискавери, и лишь 4% пробуют AI для визуальных проверок. А 22% QA-специалистов вообще не используют ИИ в своей работе.

Главные проблемы в тестировании

На первом месте — сжатые сроки. Об этом сказали 71% участников опроса. На втором — слабое вовлечение QA в процессы (40%) и нехватка квалифицированных специалистов (37%).

Как измеряют качество

  • Главная метрика — количество найденных багов (58%).
  • Покрытие автотестами учитывают 43%, покрытие кода — только 23%.
  • Стабильность тестов (например, чтобы они не «флапали») отслеживают всего 15% команд.

Что будет с профессией дальше? Мнения разделились:

  • 37% считают, что всё уйдёт в тотальную автоматизацию;
  • 35% уверены, что ничего особо не поменяется;
  • почти треть верит, что QA станет глубже интегрироваться в специфические направления вроде ИБ и производительности;
  • 27% видят будущее за DevOps и SRE — то есть тесной работой на всех этапах: от разработки до эксплуатации.
AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru