Система распознавания лиц от Amazon узнала в политиках США преступников

Система распознавания лиц от Amazon узнала в политиках США преступников

Система распознавания лиц от Amazon узнала в политиках США преступников

Американский союз защиты гражданских свобод (ACLU) провел тестирование системы распознавания лиц Rekognition от Amazon. Результаты показали, что система ошибочно определила 28 членов Конгресса как уголовников.

По словам проводивших эксперимент специалистов, они загрузили 25 000 фотографий под арестом (магшот) из публичного источника, а затем сопоставили их с официальными фотографиями всех 535 членов Конгресса.

В итоге Rekognition нашла 28 совпадений, из которых 6 пришлось на чернокожих политиков. Системы распознавания лиц известны своими погрешностями при распознавании чернокожих людей.

Представители партии Congressional Black Caucus, состоящей преимущественно из афроамериканцев, давно выказывали обеспокоенность Rekognition по поводу «глубоких негативных последствий» использования такой технологии.

Проблема с ложными опознаниями, по мнению некоторых экспертов, может привести к конфликтам чернокожих граждан с правоохранительными органами. Стоит отметить, что Rekognition уже использует ряд полицейских отделений по всей Америке.

Исходя из результатов теста, ACLU призывает Конгресс пересмотреть свою позицию относительно использования правоохранителями системы распознавания лиц от Amazon.

Весь эксперимент обошелся союзу всего в $12,33.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru