HP выявила серьезные уязвимости в домашних системах безопасности

HP опубликовала результаты исследования, демонстрирующего, что наблюдение за домами, оснащенными системами безопасности с подключением к Интернету, могут осуществлять не только их владельцы, но и злоумышленники. Все без исключения проанализированные устройства, используемые для обеспечения безопасности домов, имеют серьезные уязвимости, в том числе связанные с защитой паролем, шифрованием и проверкой подлинности.

Домашние средства мониторинга, такие как видеокамеры и системы сигнализации, завоевали популярность на волне бума Интернета вещей (IoT), в первую очередь благодаря их исключительному удобству. По данным Gartner, в 2015 году количество устройств, подключенных к Интернету вещей, составит 4,9 млрд, а к 2020 году оно достигнет 25 млрд(1).Это исследование показывает, насколько плохо с точки зрения безопасности подготовлен рынок к ожидаемым темпам роста IoT.

«Оставляя в стороне удобство и доступность подключенных к Интернету устройств, нужно отметить, что они могут сделать наши дома и семьи уязвимыми, — говорит Джейсон Шмитт (Jason Schmitt), вице-президент и  руководитель подразделения по продуктам Fortify подразделения Enterprise Security Products компании HP. — Учитывая, что десять ведущих систем не имеют фундаментальных функций безопасности, потребители не должны забывать о самых простых мерах защиты, а производители — о том, что они в, конечном итоге, несут ответственность за безопасность своих пользователей».

HP использовала приложение HP Fortify on Demand для доступа к 10 домашним IoT-устройствам обеспечения безопасности, а также к их облачным и мобильным компонентам, и обнаружила, что ни одна из этих систем не требует использования надежного пароля и не предлагает двухфакторной проверки подлинности.

В числе наиболее распространенных и легко решаемых проблем с безопасностью оказались следующие.

  • Недостаточно надежная проверка подлинности: все системы с их облачными и мобильными интерфейсами не требовали установки паролей достаточной сложности и длины; для большинства было достаточно буквенно-цифрового пароля из шести символов. Ни одна из систем не предлагала возможности заблокировать учетную запись после определенного числа неудачных попыток ввода пароля.
  • Незащищенные интерфейсы: все протестированные облачные веб-интерфейсы имеют проблемы безопасности, позволяющие потенциальному злоумышленнику получить доступ к учетной записи с помощью инструментов, использующих три уязвимости приложения: возможность последовательного перебора значений, слабая политика паролей и отсутствие блокировки учетной записи. В пяти из десяти протестированных систем были выявлены проблемы в интерфейсе мобильного приложения, подвергающие пользователей аналогичным рискам.
  • Проблемы конфиденциальности: все системы собирали некоторые виды персональной информации, такие как имя, адрес, дата рождения, номер телефона и даже номера кредитных карт. Незащищенность этой персональной информации вызывает озабоченность, поскольку создает угрозу кражи учетных данных во всех системах. Стоит также отметить, что ключевой особенностью многих домашних систем безопасности является использование видео, просмотр которого доступен через мобильные приложения и облачные веб-интерфейсы. Конфиденциальность видеоизображений внутренних помещений дома находится под большим вопросом.
  • Отсутствие шифрования при передаче данных: хотя во всех системах реализованы механизмы шифрования на транспортном уровне, такие как SSL/TLS, многие облачные подключения остаются уязвимыми для атак (например, для атаки POODLE). Правильная настройка шифрования на транспортном уровне особенно важна, поскольку безопасность является основной функцией этих систем.

Пока производители IoT-продуктов работают над внедрением столь необходимых средств защиты, потребителям настоятельно рекомендуется учитывать все эти аспекты при выборе системы мониторинга для своего дома. Развертывание безопасных домашних сетей до подключения небезопасных IoT-устройств, использование сложных паролей, блокировки учетных записей и двухфакторной проверки подлинности, — вот лишь некоторые меры, доступные пользователям Интернета вещей.

Эта работа является продолжением исследования Интернета вещей, проведенного HP в 2014 году, в котором была рассмотрена безопасность десяти наиболее распространенных IoT-устройств. 

Anti-Malware Яндекс ДзенПодписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.

Волокна Windows позволяют выполнить вредоносный шеллкод незаметно для EDR

На проходящей в Сингапуре конференции Black Hat Asia были представлены два новых способа использования волокон Windows (fibers) для выполнения вредоносного кода. Один из них, Poison Fiber, допускает проведение атаки удаленно.

Автором обоих PoC является независимый ИБ-исследователь Даниел Джэри (Daniel Jary). По его словам, атаки Poison Fiber и Phantom Thread представляют собой улучшенные варианты opensource-разработок: они позволяют надежнее скрыть сторонний шеллкод или другую полезную нагрузку в системе, находящейся под защитой EDR.

Поддержка волокон была введена в Windows 3 и ранних версиях macOS в обеспечение многозадачной работы по упрощенной схеме. В те времена у процессоров было меньше ядер, и разделение рабочей нагрузки на потоки не всегда давало нужный эффект.

Концепция волокон обеспечила более мелкое дробление, уже внутри потоков. При этом они существуют только в режиме пользователя, а планирование осуществляет поток, в контексте которого они выполняются.

Для ядра ОС волокна невидимы (к планировщику заданий обращаются потоки, они и считаются исполнителями всех операций), из памяти их извлечь трудно. Подобные свойства очень привлекательны для злоумышленников: они позволяют внедрить в систему вредоносный код в обход антивирусной защиты.

Волокна и по сей день используются некоторыми процессами Windows, а также облегчают перенос приложений с других платформ. Возможность злоупотреблений проверялась неоднократно; так, в 2022 году были опубликованы PoC-методы сокрытия в волокне шеллкода и маскировки стека вызовов с помощью спящего волокна (добавлен в набор Cobalt Strike).

Разработка Phantom Thread использует второй подход, но при этом возможность обнаружить зловреда сканированием памяти полностью исключена. С этой целью создается волокно, а затем патчится таким образом, чтобы выдать его за поток.

Второй PoC, созданный Джэри (Poison Fiber), перечисляет запущенные процессы Windows и фиксирует потоки, использующие волокна, а затем предоставляет возможность внедрить пейлоад или шеллкод в спящее волокно — такие всегда найдутся на стеке. Вредоносная инъекция защиту не насторожит, как случае с остановом потока, а исполнение запустит легальная программа.

«Атаки через волокна — это не повышение привилегий, не обход UAC, но доставка полезной нагрузки при этом привлекает намного меньше внимания, — пояснил исследователь для Dark Reading. — Их легко реализовать и труднее детектировать, поэтому волокна — прекрасный вариант для любого скрипт-кидди».

Публиковать другие подробности и PoC-коды Джэри пока не собирается, но советует ИБ-службам включить Windows Fibers в список потенциальных векторов атаки, а EDR-защиту постоянно проверять на готовность к новым угрозам.

Anti-Malware Яндекс ДзенПодписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru