Новая версия Solar appScreener позволит снизить затраты на DevSecOps на 15%

Новая версия Solar appScreener позволит снизить затраты на DevSecOps на 15%

Новая версия Solar appScreener позволит снизить затраты на DevSecOps на 15%

Группа компаний «Солар» представила обновленную версию платформы для анализа кода Solar appScreener. Улучшенные алгоритмы позволяют повысить эффективность процессов DevSecOps и оптимизировать использование ресурсов.

По данным опроса среди пользователей платформы, внедрение решения способствует снижению совокупной стоимости владения (ТСО) безопасной разработки до 15%.

Использование инструментов анализа кода в процессе разработки помогает сократить риски, связанные с уязвимостями мобильных и веб-приложений. Согласно данным Центра исследования киберугроз Solar 4RAYS, за первое полугодие 2024 года 43% хакерских атак на корпоративную инфраструктуру были связаны с уязвимостями в приложениях.

Среди наиболее распространенных проблем — недостатки контроля доступа (75% для веб-приложений и 60% для мобильных), раскрытие отладочной и конфигурационной информации (73% и 60% соответственно), межсайтовый скриптинг (XSS), а также утечка данных из исходного кода мобильных приложений (33%).

«Рост стоимости владения программным обеспечением в корпоративном сегменте оценивается в 10–20% ежегодно. На это влияют сложности с закупкой оборудования, инвестиции в импортозамещение и кадровый дефицит. В обновленной версии Solar appScreener мы сосредоточились на оптимизации использования ресурсов без ущерба для качества и безопасности кода. Это позволяет разработчикам встроить платформу в цикл разработки, снизить риски при работе с приложениями и обеспечить защиту пользовательских данных», — отмечает Владимир Высоцкий, руководитель направления Solar appScreener.

Обновленная версия предлагает новые механизмы управления агентами сканирования, что позволяет ИТ-командам параллельно анализировать несколько проектов с учетом их приоритетов.

Оптимизированы модули анализа, включая использование вычислительных ресурсов, что особенно актуально для крупных проектов с объемом кода в миллионы строк. В ходе тестирования зафиксировано сокращение времени сканирования на 15–35%.

Также переработан дистрибутив системы, что упрощает установку и снижает требования к квалификации специалистов. В целях ускорения DevSecOps-процессов добавлена возможность регулирования глубины анализа кода — например, анализ только прямых зависимостей или отключение перекрестных библиотек в рамках SAST-анализа.

Кроме того, в новой версии усовершенствованы механизмы статического и динамического анализа кода. База правил SAST-модуля пополнилась 500 новыми сигнатурами поиска уязвимостей, а в модуле DAST расширены возможности аутентификации, включая поддержку протокола NTLM и интеграцию с расширенными API-спецификациями тестируемого ПО.

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru