Новая версия Solar appScreener позволит снизить затраты на DevSecOps на 15%

Новая версия Solar appScreener позволит снизить затраты на DevSecOps на 15%

Новая версия Solar appScreener позволит снизить затраты на DevSecOps на 15%

Группа компаний «Солар» представила обновленную версию платформы для анализа кода Solar appScreener. Улучшенные алгоритмы позволяют повысить эффективность процессов DevSecOps и оптимизировать использование ресурсов.

По данным опроса среди пользователей платформы, внедрение решения способствует снижению совокупной стоимости владения (ТСО) безопасной разработки до 15%.

Использование инструментов анализа кода в процессе разработки помогает сократить риски, связанные с уязвимостями мобильных и веб-приложений. Согласно данным Центра исследования киберугроз Solar 4RAYS, за первое полугодие 2024 года 43% хакерских атак на корпоративную инфраструктуру были связаны с уязвимостями в приложениях.

Среди наиболее распространенных проблем — недостатки контроля доступа (75% для веб-приложений и 60% для мобильных), раскрытие отладочной и конфигурационной информации (73% и 60% соответственно), межсайтовый скриптинг (XSS), а также утечка данных из исходного кода мобильных приложений (33%).

«Рост стоимости владения программным обеспечением в корпоративном сегменте оценивается в 10–20% ежегодно. На это влияют сложности с закупкой оборудования, инвестиции в импортозамещение и кадровый дефицит. В обновленной версии Solar appScreener мы сосредоточились на оптимизации использования ресурсов без ущерба для качества и безопасности кода. Это позволяет разработчикам встроить платформу в цикл разработки, снизить риски при работе с приложениями и обеспечить защиту пользовательских данных», — отмечает Владимир Высоцкий, руководитель направления Solar appScreener.

Обновленная версия предлагает новые механизмы управления агентами сканирования, что позволяет ИТ-командам параллельно анализировать несколько проектов с учетом их приоритетов.

Оптимизированы модули анализа, включая использование вычислительных ресурсов, что особенно актуально для крупных проектов с объемом кода в миллионы строк. В ходе тестирования зафиксировано сокращение времени сканирования на 15–35%.

Также переработан дистрибутив системы, что упрощает установку и снижает требования к квалификации специалистов. В целях ускорения DevSecOps-процессов добавлена возможность регулирования глубины анализа кода — например, анализ только прямых зависимостей или отключение перекрестных библиотек в рамках SAST-анализа.

Кроме того, в новой версии усовершенствованы механизмы статического и динамического анализа кода. База правил SAST-модуля пополнилась 500 новыми сигнатурами поиска уязвимостей, а в модуле DAST расширены возможности аутентификации, включая поддержку протокола NTLM и интеграцию с расширенными API-спецификациями тестируемого ПО.

AppSec.Track научился проверять код, написанный ИИ

AppSec.Track добавил поддержку работы с ИИ и стал первым российским SCA-анализатором, который умеет проверять код прямо в связке с ИИ-ассистентами. Обновление рассчитано в том числе на так называемых «вайб-кодеров» — разработчиков, которые активно используют LLM и ИИ-редакторы для генерации кода.

Новый функционал решает вполне практичную проблему: ИИ всё чаще пишет код сам, но далеко не всегда делает это безопасно.

Модель может «галлюцинировать», предлагать несуществующие пакеты, устаревшие версии библиотек или компоненты с известными уязвимостями. AppSec.Track теперь умеет отлавливать такие ситуации автоматически.

Разработчик может прямо в диалоге с ИИ-ассистентом запросить проверку сгенерированного кода через AppSec.Track. Система проанализирует используемые сторонние компоненты, подсветит потенциальные угрозы и предложит варианты исправления. В основе механизма — протокол MCP (Model Context Protocol), который позволяет безопасно подключать инструменты анализа к LLM.

Как поясняет директор по продукту AppSec.Track Константин Крючков, разработчики всё чаще пишут код «по-новому», а значит, и инструменты анализа должны меняться. Редакторы вроде Cursor или Windsurf уже умеют многое, но им всё равно нужна качественная и актуальная база уязвимостей. Именно её и даёт AppSec.Track, включая учёт внутренних требований безопасности конкретной компании. В итоге даже разработчик без глубокой экспертизы в ИБ может получить более надёжный результат.

Проблема особенно заметна на фоне роста low-coding и vibe-coding подходов. Код создаётся быстрее, а иногда — почти без участия человека, но с точки зрения безопасности в нём могут скрываться неприятные сюрпризы: SQL-инъекции, логические ошибки или небезопасные зависимости. Как отмечает старший управляющий директор AppSec Solutions Антон Башарин, ИИ-ассистенты не заменяют классические практики DevSecOps — особенно когда речь идёт об open source, где информация об угрозах обновляется быстрее, чем обучаются модели.

Новый функционал AppSec.Track ориентирован на профессиональные команды разработки, которые уже внедряют ИИ в свои процессы. Он позволяет сохранить требования Secure by Design и снизить риски даже в условиях активного использования генеративного кода.

RSS: Новости на портале Anti-Malware.ru