Новая версия Solar appScreener позволит снизить затраты на DevSecOps на 15%

Новая версия Solar appScreener позволит снизить затраты на DevSecOps на 15%

Новая версия Solar appScreener позволит снизить затраты на DevSecOps на 15%

Группа компаний «Солар» представила обновленную версию платформы для анализа кода Solar appScreener. Улучшенные алгоритмы позволяют повысить эффективность процессов DevSecOps и оптимизировать использование ресурсов.

По данным опроса среди пользователей платформы, внедрение решения способствует снижению совокупной стоимости владения (ТСО) безопасной разработки до 15%.

Использование инструментов анализа кода в процессе разработки помогает сократить риски, связанные с уязвимостями мобильных и веб-приложений. Согласно данным Центра исследования киберугроз Solar 4RAYS, за первое полугодие 2024 года 43% хакерских атак на корпоративную инфраструктуру были связаны с уязвимостями в приложениях.

Среди наиболее распространенных проблем — недостатки контроля доступа (75% для веб-приложений и 60% для мобильных), раскрытие отладочной и конфигурационной информации (73% и 60% соответственно), межсайтовый скриптинг (XSS), а также утечка данных из исходного кода мобильных приложений (33%).

«Рост стоимости владения программным обеспечением в корпоративном сегменте оценивается в 10–20% ежегодно. На это влияют сложности с закупкой оборудования, инвестиции в импортозамещение и кадровый дефицит. В обновленной версии Solar appScreener мы сосредоточились на оптимизации использования ресурсов без ущерба для качества и безопасности кода. Это позволяет разработчикам встроить платформу в цикл разработки, снизить риски при работе с приложениями и обеспечить защиту пользовательских данных», — отмечает Владимир Высоцкий, руководитель направления Solar appScreener.

Обновленная версия предлагает новые механизмы управления агентами сканирования, что позволяет ИТ-командам параллельно анализировать несколько проектов с учетом их приоритетов.

Оптимизированы модули анализа, включая использование вычислительных ресурсов, что особенно актуально для крупных проектов с объемом кода в миллионы строк. В ходе тестирования зафиксировано сокращение времени сканирования на 15–35%.

Также переработан дистрибутив системы, что упрощает установку и снижает требования к квалификации специалистов. В целях ускорения DevSecOps-процессов добавлена возможность регулирования глубины анализа кода — например, анализ только прямых зависимостей или отключение перекрестных библиотек в рамках SAST-анализа.

Кроме того, в новой версии усовершенствованы механизмы статического и динамического анализа кода. База правил SAST-модуля пополнилась 500 новыми сигнатурами поиска уязвимостей, а в модуле DAST расширены возможности аутентификации, включая поддержку протокола NTLM и интеграцию с расширенными API-спецификациями тестируемого ПО.

ФСТЭК России определилась со списком угроз для ИИ-систем

В банке данных угроз (БДУ), созданном ФСТЭК России, появился раздел о проблемах, специфичных для ИИ. Риски в отношении ИБ, связанные с качеством софта, ML-моделей и наборов обучающих данных, здесь не рассматриваются.

Угрозы нарушения конфиденциальности, целостности или доступности информации, обрабатываемой с помощью ИИ, разделены на две группы — реализуемые на этапе разработки / обучения и в ходе эксплуатации таких систем.

В инфраструктуре разработчика ИИ-систем оценки на предмет безопасности информации требуют следующие объекты:

 

Объекты, подлежащие проверке на безопасность в инфраструктуре оператора ИИ-системы:

 

Дополнительно и разработчикам, и операторам следует учитывать возможность утечки конфиденциальной информации, а также кражи, отказа либо нарушения функционирования ML-моделей.

Среди векторов возможных атак упомянуты эксплойт уязвимостей в шаблонах для ИИ, модификация промптов и конфигурации агентов, исчерпание лимита на обращения к ИИ-системе с целью вызвать отказ в обслуживании (DoS).

В комментарии для «Ведомостей» первый замдиректора ФСТЭК Виталий Лютиков пояснил, что составленный ими перечень угроз для ИИ ляжет в основу разрабатываемого стандарта по безопасной разработке ИИ-систем, который планировалась вынести на обсуждение до конца этого года.

Представленная в новом разделе БДУ детализация также поможет полагающимся на ИИ госструктурам и субъектам КИИ данных скорректировать процессы моделирования угроз к моменту вступления в силу приказа ФТЭК об усилении защиты данных в ГИС (№117, заработает с марта 2026 года).

Ужесточение требований регулятора в отношении безопасности вызвано ростом числа атак, в том числе на ИИ. В этих условиях важно учитывать не только возможности ИИ-технологий, но и сопряженные с ними риски.

RSS: Новости на портале Anti-Malware.ru