Критическая уязвимость в DJL грозит атаками через Java-софт с встроенным ИИ

Критическая уязвимость в DJL грозит атаками через Java-софт с встроенным ИИ

Критическая уязвимость в DJL грозит атаками через Java-софт с встроенным ИИ

В Deep Java Library (DJL) объявилась уязвимость, позволяющая провести атаку на Windows, macOS или Linux при загрузке ИИ-модели. Патч уже доступен, пользователям настоятельно рекомендуется обновить библиотеку машинного обучения до версии 0.31.1.

Опенсорсный фреймворк DJL используется разработчиками Java-приложений для интеграции с ИИ. Уязвимости в таких инструментах особенно опасны в условиях общего доступа к ИИ-модели, развернутой в облаке или корпоративной среде.

Проблема CVE-2025-0851 (9,8 балла CVSS) классифицируется как обход каталога, то есть представляет собой возможность записи файлов в произвольное место в системе. В появлении уязвимости повинны утилиты ZipUtils.unzip и TarUtils.untar, используемые для распаковки архивов при загрузке ИИ-моделей.

Злоумышленник может, к примеру, создать в Windows вредоносный архив, и его распаковка на платформе macOS или Linux произойдет вне рабочего каталога. Таким же образом можно провести атаку на Windows, создав архив в macOS/Linux.

Эксплойт позволяет получить удаленный доступ к системе, вставив ключ SSH в файл authorized_keys. Данная уязвимость также провоцирует межсайтовый скриптинг (XSS) через инъекцию HTML-файлов в общедоступную директорию.

Кроме того, высока вероятность атаки на цепочку поставок с целью забэкдоривания корпоративного конвейера ИИ: аналитики данных и исследователи в области ИИ зачастую загружают предобученные модели из внешних источников.

Уязвимости подвержены все выпуски DJL ниже 0.31.1. Данных о злонамеренном использовании CVE-2025-0851 пока нет. Пользователям рекомендуется установить новейшую сборку пакета и загружать архивы ИИ-моделей только из доверенных источников — таких как DJL Model Zoo.

1,8 млн Android-телевизоров стали частью ботнета Kimwolf

Исследователи из QiAnXin XLab рассказали о новом гигантском DDoS-ботнете под названием Kimwolf. По их оценкам, он объединил около 1,8 млн заражённых устройств — в основном Android-телевизоры, ТВ-приставки и планшеты, которые стоят в домашних сетях по всему миру.

В отчёте XLab отмечается, что вредонос написан с использованием Android NDK и, помимо DDoS-функций, умеет работать как прокси, открывать обратный шелл и управлять файлами на устройстве.

Проще говоря, заражённый телевизор или приставка превращаются в универсальный инструмент для удалённого заработка злоумышленников.

Масштаб активности впечатляет. Всего за три дня — с 19 по 22 ноября 2025 года — ботнет разослал около 1,7 млрд команд для DDoS-атак. В этот же период один из управляющих доменов Kimwolf неожиданно взлетел в рейтинге топ-100 Cloudflare и на короткое время даже обогнал Google по количеству запросов.

Основные цели заражения — ТВ-боксы и смарт-ТВ популярных моделей, включая TV BOX, SuperBOX, X96Q, MX10, SmartTV и другие. Наибольшее число заражённых устройств зафиксировано в Бразилии, Индии, США, Аргентине, ЮАР и на Филиппинах. Каким именно способом вредонос попадает на устройства, пока до конца не ясно.

Интересно, что Kimwolf оказался тесно связан с другим известным ботнетом — AISURU, который в последние годы фигурировал в отчётах о рекордных DDoS-атаках. По данным XLab, оба ботнета распространялись одними и теми же скриптами и одновременно существовали на одних и тех же устройствах. Исследователи считают, что за ними стоит одна и та же группировка, а Kimwolf мог быть создан как «эволюция» AISURU — для обхода детектирования и блокировок.

Инфраструктуру Kimwolf уже несколько раз пытались гасить: его управляющие домены как минимум трижды отключали в декабре. В ответ операторы ботнета перешли к более стойким схемам — например, начали использовать Ethereum Name Service (ENS). В новых версиях вредонос получает IP-адрес управляющего сервера прямо из данных смарт-контракта в блокчейне, что сильно усложняет блокировку.

 

Любопытно и то, как ботнет используется на практике. Более 96% команд связаны не с атаками, а с прокси-сервисами. Злоумышленники фактически перепродают трафик заражённых устройств, выжимая максимум из их пропускной способности. Для этого применяется отдельный клиент на Rust и SDK для монетизации трафика.

RSS: Новости на портале Anti-Malware.ru