Спрос на услуги по безопасности генеративного ИИ активно растет

Спрос на услуги по безопасности генеративного ИИ активно растет

Спрос на услуги по безопасности генеративного ИИ активно растет

По данным Swordfish Security, за услугами по безопасности больших языковых моделей (LLM Security) в 2024 году обращались 35% заказчиков. Спрос на такие услуги растет прямо пропорционально внедрению подобных инструментов в бизнес-практику.

В 2025 году такая практика будет только расширяться, поскольку генеративный интеллект, прежде всего, большие языковые модели, будут внедряться все более активно. В будущем году уровень проникновения генеративного ИИ составит не менее 40%, а к 2030 году может достигнуть и 90%.

Как отметил директор по развитию бизнеса ГК Swordfish Security Андрей Иванов, рост интереса к безопасности больших языковых моделей стал одной из главных тенденций 2024 года. Недооценка таких рисков чревата серьезными проблемами. Среди таких рисков Андрей Иванов инъекции вредоносного кода в промпт, уязвимости в цепочках поставок, выдача ошибочной информации за истину на этапе обучения модели и даже кража модели злоумышленниками.

«В бизнесе используют большие модели для распознавания текста, анализа данных, предиктивной аналитики, поиска, оценки ресурса механических узлов промышленных агрегатов и многого другого. Многие отрасли, та же ИТ, активно используют ИИ-помощников. Например, в DevSecOps мы обучили и применяем модель, которая может анализировать и приоритизировать большой объем уязвимостей кода, таким образом освобождая время для квалифицированных инженеров для других, более сложных и творческих задач, — комментирует Андрей Иванов. — Критичным может оказаться, например, некорректная работа виртуальных ассистентов, которые могут влиять на клиентские решения, аналитику, дающую ошибочную информацию в цепочке поставок. Существуют атаки, отравляющие данные или позволяющие получить конфиденциальную информацию, и так далее. К этому стоит относиться как к любой информационной системе, влияющей на бизнес-процесс и проводящей, в случае компрометации, к потерям репутации и убыткам».

Внедрение ИИ требует корректировки корпоративных политик ИБ. Важно делать акцент на безопасности, а разрабатывать модели необходимо в соответствие с практиками разработки безопасного ПО, анализируя исходный код и зависимости, ответственно относиться к контролю доступа к источникам данных и стараться использовать доверенные алгоритмы обучения, уверен Андрей Иванов. Также важно учитывать то, что многие большие языковые модели используют облачную архитектуру, а это создает угрозу утечки конфиденциальных данных.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

34% тестировщиков применяют ИИ для генерации кода, 28% — для тест-кейсов

2ГИС решила разобраться, как себя чувствует русскоязычное QA-сообщество: чем пользуются тестировщики, как устроены процессы и как в работу проникает искусственный интеллект. В исследовании поучаствовали 570 QA-специалистов, почти половина из них работают в крупных компаниях.

57% опрошенных сказали, что подключаются к разработке фич ещё на этапе обсуждения требований — то есть задолго до появления кода.

Лишь 20% приходят в проект только после завершения разработки. А вариант «подключаюсь, когда в продакшене что-то сломалось» — уже почти экзотика.

89% команд используют автотесты — от юнитов до UI. Но вот инструменты вокруг них, вроде поддержки, аналитики и стабильности, применяют далеко не все. Например, код-ревью автотестов делают только 39% опрошенных, а 28% команд вообще не отслеживают никаких метрик и работают «вслепую».

ИИ используют не все, и в основном — для рутинных задач

Хотя ИИ уже прочно вошёл в мир тестирования, чаще всего его применяют для типовых задач:

  • написание тестового кода (34%),
  • генерация тест-кейсов (28%),
  • и тестовых данных (26%).

 

Более продвинутые сценарии вроде анализа тестов, автоматического поиска багов и визуального тестирования пока используются редко. Например, только 5% автоматизируют дефект-дискавери, и лишь 4% пробуют AI для визуальных проверок. А 22% QA-специалистов вообще не используют ИИ в своей работе.

Главные проблемы в тестировании

На первом месте — сжатые сроки. Об этом сказали 71% участников опроса. На втором — слабое вовлечение QA в процессы (40%) и нехватка квалифицированных специалистов (37%).

Как измеряют качество

  • Главная метрика — количество найденных багов (58%).
  • Покрытие автотестами учитывают 43%, покрытие кода — только 23%.
  • Стабильность тестов (например, чтобы они не «флапали») отслеживают всего 15% команд.

Что будет с профессией дальше? Мнения разделились:

  • 37% считают, что всё уйдёт в тотальную автоматизацию;
  • 35% уверены, что ничего особо не поменяется;
  • почти треть верит, что QA станет глубже интегрироваться в специфические направления вроде ИБ и производительности;
  • 27% видят будущее за DevOps и SRE — то есть тесной работой на всех этапах: от разработки до эксплуатации.
AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru