Deceptive Delight: джейлбрейк ИИ-моделей, использующий их благосклонность

Deceptive Delight: джейлбрейк ИИ-моделей, использующий их благосклонность

Deceptive Delight: джейлбрейк ИИ-моделей, использующий их благосклонность

В Palo Alto Networks разработали новый метод обхода ограничений больших языковых моделей (БЯМ, LLM), на которых обычно строятся ИИ-боты. Тестирование на восьми популярных моделях показало результативность почти 65%.

Метод джейлбрейка ИИ-моделей, получивший имя Deceptive Delight, схож с другими атаками, которые полагаются на поэтапную инъекцию вредоносных подсказок-стимулов в ходе взаимодействия с LLM.

Однако в отличие от аналогов он позволяет получить искомый результат всего за два коммуникативных шага.

 

В ходе экспериментов был добавлен третий шаг: LLM попросили развить потенциально опасную тему. В итоге было получено качественное, подробное руководство по изготовлению «коктейля Молотова».

При разработке своего джейлбрейка эксперты сделали ставку на ограниченный объем внимания LLM — ее неспособность сохранять контекстную осведомленность при генерации ответов. Когда вводится сложный или длинный текст, в котором безобидный контент слит с вредоносным, модель может сконцентрироваться на первом и неправильно воспринять либо проигнорировать второй.

Для тестирования были выбраны 40 скользких тем, сгруппированных в шесть категорий: «ненависть», «харасмент», «самоистязание», «сексуального характера», «насилие» и «опасный».

Поскольку предметом исследования являлась проверка на прочность встроенной защиты, у восьми контрольных LLM отключили контент-фильтры, которые обычно отслеживают и блокируют стимулы и ответы с неприемлемым содержимым.

Тесты показали эффективность трехшаговой Deceptive Delight в среднем 64,6%. Самыми успешными оказались темы категории «насилие».

Злоумышленники научились использовать умные кормушки для слежки

Злоумышленники могут использовать взломанные умные кормушки для животных для слежки за владельцами. Для получения информации применяются встроенные в устройства микрофоны и видеокамеры. Получив несанкционированный доступ, атакующие способны наблюдать за происходящим в помещении и перехватывать данные.

Об использовании таких устройств в криминальных целях рассказал агентству «Прайм» эксперт Kaspersky ICS CERT Владимир Дащенко.

«Это уже не гипотетическая угроза: известны случаи взлома домашних камер, видеонянь, кормушек для животных и других умных приборов», — предупреждает эксперт.

По словам Владимира Дащенко, вопросам кибербезопасности таких устройств часто не уделяется должного внимания. Между тем любое оборудование с доступом в интернет может стать точкой входа для злоумышленников.

Скомпрометированные устройства могут использоваться и для атак на другие элементы домашней сети — например, смартфоны или компьютеры. Кроме того, они способны становиться частью ботнетов, применяемых для DDoS-атак или майнинга криптовалют. На подобные риски почти год назад обращало внимание МВД России.

Среди признаков возможной компрометации умных устройств эксперт называет самопроизвольные отключения, резкие изменения сетевой активности, появление сообщений об ошибках или другие нетипичные события.

RSS: Новости на портале Anti-Malware.ru