Исследователи обнаружили многофункциональный зловред для Linux

Исследователи обнаружили многофункциональный зловред для Linux

Исследователи обнаружили многофункциональный зловред для Linux

Исследователи кибербезопасности из компании Aqua обнаружили новую вредоносную кампанию, получившую название Hadooken. Зловреды распространяются через серверы Oracle Weblogic и занимаются майнингом криптовалют, а также доставкой вредоносных программ для DDoS-ботнета.

Цепь атаки использует как известные уязвимости, так и ошибки в конфигурировании инфраструктуры, в частности, слабые пароли.

Вредоносная программа устанавливается в систему или через специальный скрипт, или программу, написанную на языке Python с идентичной функциональностью.

«Скрипта пытается просматривает различные каталоги, содержащим SSH-данные (учетные данные пользователя, информация хоста), и использует эту информацию для атаки на известные серверы. Затем он перемещается в боковом направлении по организации или подключенным средам, чтобы еще больше распространить вредоносную программу Hadooken», — такие подробности привел изданию The Hacker News исследователь компании Aqua Ассаф Моран.

Hadooken содержит два компонента: майнер криптовалют и утилита DDoS-ботнета Tsunami (он же Kaiten). Зловред распространяется с сервера, находящегося в Германии и принадлежащего хостингу Aeza International.

Серверы, принадлежащие данной компании, использовались в кампании 8220 Gang, которая использовала чужие вычислительные ресурсы для майнинга.

AppSec.Track научился проверять код, написанный ИИ

AppSec.Track добавил поддержку работы с ИИ и стал первым российским SCA-анализатором, который умеет проверять код прямо в связке с ИИ-ассистентами. Обновление рассчитано в том числе на так называемых «вайб-кодеров» — разработчиков, которые активно используют LLM и ИИ-редакторы для генерации кода.

Новый функционал решает вполне практичную проблему: ИИ всё чаще пишет код сам, но далеко не всегда делает это безопасно.

Модель может «галлюцинировать», предлагать несуществующие пакеты, устаревшие версии библиотек или компоненты с известными уязвимостями. AppSec.Track теперь умеет отлавливать такие ситуации автоматически.

Разработчик может прямо в диалоге с ИИ-ассистентом запросить проверку сгенерированного кода через AppSec.Track. Система проанализирует используемые сторонние компоненты, подсветит потенциальные угрозы и предложит варианты исправления. В основе механизма — протокол MCP (Model Context Protocol), который позволяет безопасно подключать инструменты анализа к LLM.

Как поясняет директор по продукту AppSec.Track Константин Крючков, разработчики всё чаще пишут код «по-новому», а значит, и инструменты анализа должны меняться. Редакторы вроде Cursor или Windsurf уже умеют многое, но им всё равно нужна качественная и актуальная база уязвимостей. Именно её и даёт AppSec.Track, включая учёт внутренних требований безопасности конкретной компании. В итоге даже разработчик без глубокой экспертизы в ИБ может получить более надёжный результат.

Проблема особенно заметна на фоне роста low-coding и vibe-coding подходов. Код создаётся быстрее, а иногда — почти без участия человека, но с точки зрения безопасности в нём могут скрываться неприятные сюрпризы: SQL-инъекции, логические ошибки или небезопасные зависимости. Как отмечает старший управляющий директор AppSec Solutions Антон Башарин, ИИ-ассистенты не заменяют классические практики DevSecOps — особенно когда речь идёт об open source, где информация об угрозах обновляется быстрее, чем обучаются модели.

Новый функционал AppSec.Track ориентирован на профессиональные команды разработки, которые уже внедряют ИИ в свои процессы. Он позволяет сохранить требования Secure by Design и снизить риски даже в условиях активного использования генеративного кода.

RSS: Новости на портале Anti-Malware.ru