Solar appScreener расширил возможности анализа и стал меньше ошибаться

Solar appScreener расширил возможности анализа и стал меньше ошибаться

Solar appScreener расширил возможности анализа и стал меньше ошибаться

ГК «Солар» анонсировала выпуск новой версии Solar appScreener — 3.14.9. Добавленный в прошлом году модуль SCA претерпел качественные изменения, снижено число ложных срабатываний, появилась возможность интеграции решений класса ASOC.

Сканер кода также научился комбинировать анализ SCA и SAST для Java, JavaScript, Golang, Python и C# (список языков будет расширяться). В результате вывод с Solar appScreener теперь может содержать не только уязвимости, выявленные в сторонних библиотеках, но также трассировку вызовов этих компонентов, что экономит время на верификацию находок.

У модуля SCA появилась собственная, регулярно обновляемая база уязвимостей. Минимизировать количество ложных срабатываний помогает уникальная технология Fuzzy Logic Engine, позволяющая приоритизировать уязвимости высокой степени риска по EPSS.

«Согласно Linux Foundation, от 70% до 90% современных приложений содержат ПО с открытым исходным кодом, что открывает перед киберпреступниками широкие возможности для атак, — отметил Антон Прокофьев, эксперт «Солара» по контролю безопасности Solar appScreener. — Один из последних ярких примеров — бэкдор в популярной утилите XZ Utils для Linux, который позволяет получить несанкционированный удаленный доступ ко всей системе»,

Арсенал appScreener теперь можно расширить за счет интеграции ASOC-инструментов DefectDojo и AppSecHub и получить еще более полную картину безопасности приложения в одном интерфейсе.

У пользователей появилась опция сборки Java-проектов собственными инструментами, упрощающая автоматизацию безопасной разработки. Добавлены правила поиска уязвимостей для 15 языков программирования (теперь поддерживаются 36), в том числе 1C, PHP и Python.

Ряд нововведений нацелен на повышение удобства использования анализатора:

  • появились системная роль «Модератор», шаблоны ролей;
  • в настройки добавлена возможность удаления проектов и сканов вручную;
  • на этапе предобработки файлов для статического анализа выполняются оптимизация и преобразование в удобный для чтения формат;
  • технологии анализа сторонних компонентов (SCA, SCS, SAST + SCA, лицензионные риски) объединены в модуль OSA и теперь доступны из единой вкладки в интерфейсе;
  • реализована поддержка плагинов Jenkins, TeamCity, Azure и CLT для модулей DAST и OSA.
AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

34% тестировщиков применяют ИИ для генерации кода, 28% — для тест-кейсов

2ГИС решила разобраться, как себя чувствует русскоязычное QA-сообщество: чем пользуются тестировщики, как устроены процессы и как в работу проникает искусственный интеллект. В исследовании поучаствовали 570 QA-специалистов, почти половина из них работают в крупных компаниях.

57% опрошенных сказали, что подключаются к разработке фич ещё на этапе обсуждения требований — то есть задолго до появления кода.

Лишь 20% приходят в проект только после завершения разработки. А вариант «подключаюсь, когда в продакшене что-то сломалось» — уже почти экзотика.

89% команд используют автотесты — от юнитов до UI. Но вот инструменты вокруг них, вроде поддержки, аналитики и стабильности, применяют далеко не все. Например, код-ревью автотестов делают только 39% опрошенных, а 28% команд вообще не отслеживают никаких метрик и работают «вслепую».

ИИ используют не все, и в основном — для рутинных задач

Хотя ИИ уже прочно вошёл в мир тестирования, чаще всего его применяют для типовых задач:

  • написание тестового кода (34%),
  • генерация тест-кейсов (28%),
  • и тестовых данных (26%).

 

Более продвинутые сценарии вроде анализа тестов, автоматического поиска багов и визуального тестирования пока используются редко. Например, только 5% автоматизируют дефект-дискавери, и лишь 4% пробуют AI для визуальных проверок. А 22% QA-специалистов вообще не используют ИИ в своей работе.

Главные проблемы в тестировании

На первом месте — сжатые сроки. Об этом сказали 71% участников опроса. На втором — слабое вовлечение QA в процессы (40%) и нехватка квалифицированных специалистов (37%).

Как измеряют качество

  • Главная метрика — количество найденных багов (58%).
  • Покрытие автотестами учитывают 43%, покрытие кода — только 23%.
  • Стабильность тестов (например, чтобы они не «флапали») отслеживают всего 15% команд.

Что будет с профессией дальше? Мнения разделились:

  • 37% считают, что всё уйдёт в тотальную автоматизацию;
  • 35% уверены, что ничего особо не поменяется;
  • почти треть верит, что QA станет глубже интегрироваться в специфические направления вроде ИБ и производительности;
  • 27% видят будущее за DevOps и SRE — то есть тесной работой на всех этапах: от разработки до эксплуатации.
AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru