Вышла новая версия Security Vision UEBA с расширенным набором ML-моделей

Вышла новая версия Security Vision UEBA с расширенным набором ML-моделей

Вышла новая версия Security Vision UEBA с расширенным набором ML-моделей

Продукт Security Vision UEBA автоматически выстраивает типовые модели поведения объектов инфраструктуры (пользователей, учетных записей, устройств, процессов и др.), анализируя сырые потоки данных (сетевой трафик, логи прокси-серверов, почтовых серверов, windows/linux серверов и рабочих станций и др.), выявляет отклонения и предоставляет гибкие инструменты по их анализу, расследованию и реагированию. Наиболее значимые обновления:

Anomaly Detection

Применение методов Anomaly Detection расширяет возможности выявления аномалий в корпоративной инфраструктуре, применяя большое количество разных моделей и методик Machine Learning, стекируя результаты отдельных моделей и объединяя полученные события в инциденты для дальнейшего расследования.

ML-модели

В новой версии Security Vision UEBA существенного расширен набор используемых ML-моделей. Применяются следующие модели:

  • «с учителем» для выявления похожих паттернов реальных атак (предобученные на различных атаках и вредоносных активностях (DDOS, botnet, C&C и др.)),
  • модели «без учителя» для нахождения аномалий среди сетевого трафика и событий с хостов, нейросети (в т.ч.  RNN),
  • модели для обнаружения мимикрирующих процессов
  • и др.

Важно отметить, что обработка всех моделей выполняется на инфраструктуре Заказчика без необходимости отправки каких-либо данных «в облако». За счет оптимизаций архитектуры и самих моделей требования к инфраструктуре минимизированы и не требуют специализированного оборудования.

Продукт позволяет проводить гибкую настройку всех параметров ML-моделей через UI, а также добавлять собственные модели.

Минимизация false-positive сработок

Особый упор сделан на оркестрации работы ML-моделей и минимизации false-positive (FP) сработок. Разработаны механизмы автоматического контроля работы и отключения моделей в случае большого количества сработок FP. Также Security Vision UEBA автоматически и регулярно переобучает модели на данных Заказчика для лучшей адаптации к инфраструктуре, потокам данных и их изменениям. Переобучаются также и модели «с учителем», где используемые датасеты типовых атак и вредоносных активностей автоматически объединяются и «растягиваются» на данные по инфраструктуре Заказчика, полученные из обработанных событий. Реализован автоматический подбор параметров модели: Security Vision UEBA в процессе обучения сама подбирает гиперпараметры для достижения лучшего результата сработок и минимизации количества FP.

Статистические методы дают возможность автоматически накапливать статистику по новым параметрам, объемным, частотным и количественным показателям по используемым хостам, процессам, командным строкам, именованным пайпам и многим другим характеристикам отдельно по каждому объекту наблюдения, что также существенно снижает уровень FP сработок и позволяет пользователю через UI гибко настраивать веса, добавлять или корректировать имеющиеся правила.

Правила корреляции

Расширен базовый набор правил корреляции, входящих в состав коробочного решения. Экспертами Security Vision были разработаны уникальные правила корреляции, позволяющие находить подозрительные действия в потоках сетевого трафика/потоков прокси серверов, а также выявлять подозрительные события на хостах. Данные алерты объединяются вместе со сработками движков статистики и ML, что в итоге позволяет собрать более полный анализ действий подозрительного объекта, учесть каждую сработку правила корреляции со своим уникальным весом (в зависимости от критичности), который будет суммирован с весом событий от других источников наблюдения и в случае превышения порогового значения может привести к созданию инцидента.

Также в Security Vision UEBA встроен полноценный редактор правил корреляции, используя который, можно настраивать правила любой глубины и сложности через UI продукта.  

Отображение объектов и сработок

Переработано отображение всех объектов и сработок для предоставления более полного и удобного функционала анализа и расследования полученных инцидентов: графы связей объектов, автоматическое обогащение данными из внешних и внутренних сервисов, drill-down до каждого связного объекта, исходные события по объекту с указанием источника и всех атрибутов, динамика поступления событий и др. В Security Vision UEBA встроены действия по базовому реагированию на полученные инциденты (например, с NGFW, active-листами и т.п.) или для отправки инцидентов в SOAR и SIEM системы.

Используя API продукта, можно гибко настраивать получение сработок по объектам, получать подозрительные события и алерты по каждому объекту (например, для обогащения этой информацией инцидентов в SOAR).

Расширение возможностей

Продукт Security Vision UEBA реализован на платформе Security Vision 5, что позволяет Заказчикам расширять его возможности, создавая как новые объекты наблюдения (включая их карточки, общие представления, процессы обработки и сценарии реагирования), корректировать или расширять процесс обработки выявленных сработок, создавать новые интеграции, корректировать и создавать дашборды и отчеты – все полностью через графические конструкторы, встроенные в UI продукта.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

В России появится юридическое определение дипфейка

Депутат Госдумы Антон Немкин заявил о необходимости закрепить на законодательном уровне понятие дипфейка. Без чёткого определения, по его словам, невозможно эффективно регулировать эту технологию и пресекать её противоправное использование.

Как сообщил депутат в интервью РИА Новости, юридическое определение станет первым шагом к выстраиванию правового регулирования в этой сфере. Впоследствии, считает он, потребуются и дополнительные меры.

В настоящее время, как отметил Немкин, к тем, кто применяет дипфейки в незаконных целях, можно применить лишь статьи, касающиеся распространения заведомо ложной информации. Однако этого недостаточно, и нужны новые законодательные инициативы.

По словам депутата, технология дипфейк уже активно используется мошенниками. «Например, всё чаще фиксируются случаи взлома личных аккаунтов в мессенджерах и рассылки голосовых сообщений или "кружочков" от имени владельца. С помощью ИИ злоумышленники подделывают голос и мимику, создавая реалистичные видео, на которых якобы изображены знакомые люди», — пояснил он.

Такие материалы вызывают доверие у жертв и позволяют мошенникам убеждать людей переводить деньги, брать кредиты или переходить по вредоносным ссылкам. По оценке Немкина, в ближайшие полгода злоумышленники начнут использовать эти инструменты массово.

По мнению экспертов, уже в 2025 году с дипфейк-атаками может столкнуться каждый второй житель России. Мы разбирали наиболее распространённые схемы, которые уже используют злоумышленники или которые представляют наибольший риск в будущем.

Антон Немкин также подчеркнул необходимость развития и популяризации сервисов по выявлению дипфейков, в том числе ориентированных на массового пользователя. Кроме того, по его мнению, как минимум крупные цифровые платформы должны маркировать контент, созданный с помощью нейросетей.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru