Сгенерированные ИИ видеоролики помогают раздавать инфостилеров на YouTube

Сгенерированные ИИ видеоролики помогают раздавать инфостилеров на YouTube

Сгенерированные ИИ видеоролики помогают раздавать инфостилеров на YouTube

По данным CloudSEK, последнее время количество вредоносного видео на YouTube ежемесячно увеличивается в 2-3 раза. Для создания таких приманок злоумышленники зачастую используют платформы Synthesia и D-ID, реализующие ИИ-технологии.

Поддельные видеоматериалы обычно рекламируют кряки популярных лицензионных продуктов — Photoshop, Premiere Pro, Autodesk 3ds Max, AutoCAD. Созданные средствами ИИ персонажи на разных языках рассказывают, каким образом загрузить и установить пиратский софт.

По ссылкам в описаниях загружаются в основном инфостилеры — Raccoon, RedLine, Vidar. Для распространения видеоприманок злоумышленники используют угнанные аккаунты YouTube, получая доступ с помощью учетных данных, утекших в Сеть или добытых посредством фишинга.

Каждый час из-под взломанных аккаунтов публикуется по 5-10 роликов. Для их продвижения используется черный SEO: к видеоматериалам добавляется множество разноязыких тегов, способных ввести в заблуждение алгоритм YouTube и заставить его вывести фальшивку в топ поисковой выдачи.

Значительный рост числа публикаций со ссылками на инфостилеров наблюдается на видеохостинге с ноября. Распространением зловредов на этой площадке занимаются так называемые трафферы (traffer) — чернорабочие с криминальным опытом, нанятые по объявлению в даркнете.

 

Ссылки для загрузки зловредов обычно маскируются с помощью редиректоров Bitly и Cuttly. Злоумышленники также активно используют облачный хостинг (MediaFire, Google Drive), GitHub и мессенджеры (Discord, телеграм-платформа Telegra.ph).

 

Активизация трафферов на YouTube по времени совпала с новым вбросом от разработчиков инфостилеров. За последние месяцы в интернете объявилось около десятка таких новобранцев, как Stealc и WhiteSnake.

Для снижения риска заражения пользователям советуют включить многофакторную аутентификацию (MFA), не кликать по ссылкам в письмах незнакомцев и воздержаться от скачивания / использования пиратского софта.

Инструмент для отслеживания пользователей WhatsApp по номеру попал в Сеть

Исследователи бьют тревогу: в открытом доступе появился инструмент, который позволяет отслеживать активность пользователей WhatsApp (принадлежит признанной в России экстремистской организации и запрещённой корпорации Meta) и Signal, зная только номер телефона. Речь идёт не о взломе аккаунта или перехвате переписки — достаточно «пинговать» устройство и анализировать время отклика мессенджера.

Метод основан на особенностях работы протоколов доставки сообщений. WhatsApp и Signal автоматически отправляют служебные подтверждения получения данных (delivery receipts).

Эти ответы уходят ещё до того, как приложение проверит, существует ли сообщение или реакция на него. В итоге атакующий может измерять round-trip time (RTT) — время между отправкой запроса и получением ответа — и по этим значениям делать весьма точные выводы о состоянии устройства.

Уязвимость получила название Silent Whisper. Её подробно описали учёные из Венского университета и исследовательского центра SBA Research ещё в прошлом году.

Однако теперь история вышла за пределы научных публикаций: исследователь под псевдонимом gommzystudio выложил на GitHub PoC-инструмент, наглядно показывающий, насколько просто всё это работает на практике.

По словам автора, можно отправлять до 20 «пингов» в секунду, не вызывая у жертвы ни уведомлений, ни всплывающих окон, ни каких-либо видимых следов в интерфейсе приложения. При этом устройство активно отвечает на запросы, а показатели RTT меняются в зависимости от ситуации.

Картина получается довольно показательная. Низкое время отклика обычно означает, что телефон в руках пользователя, экран включён и подключение идёт по Wi-Fi. Чуть более высокий RTT — активное использование через мобильную сеть. Большие задержки говорят о режиме ожидания с выключенным экраном, а тайм-ауты — о том, что устройство офлайн или в авиарежиме. Если значения постоянно «прыгают», можно предположить, что человек в движении.

 

Со временем такие замеры позволяют восстановить повседневный распорядок: когда человек приходит домой, когда ложится спать, когда выходит из дома и пользуется мобильной связью. И это уже не просто статус «онлайн» или «офлайн», а полноценное профилирование поведения.

Отдельная проблема — нагрузка на устройство. Частые запросы быстро разряжают аккумулятор и расходуют мобильный трафик. В экспериментах исследователей iPhone и Android-смартфоны теряли от 14 до 18% заряда батареи в час. Signal в этой ситуации выглядит чуть лучше: из-за встроенного ограничения частоты ответов потери составили около 1% в час. У WhatsApp такой защиты, к сожалению, нет.

Кроме того, анализ RTT позволяет грубо определять географическое положение пользователя (например, страна или регион), тип устройства и даже операционную систему. При использовании нескольких точек зондирования точность таких выводов может заметно вырасти.

Сам разработчик инструмента подчёркивает, что проект создан исключительно в исследовательских и образовательных целях, и напоминает о возможных нарушениях законодательства при слежке за людьми без их согласия. Тем не менее репозиторий уже собрал сотни звёзд и десятки форков, а значит, доступ к инструменту есть у кого угодно.

Что можно сделать обычному пользователю? Минимум — включить в WhatsApp настройку «Блокировать сообщения от неизвестных аккаунтов» (Настройки → Конфиденциальность → Расширенные).

Это может снизить интенсивность подобных атак, хотя полностью проблему не решает. Отключение отчётов о прочтении и индикаторов активности тоже полезно, но от Silent Whisper не спасает на сто процентов.

По состоянию на декабрь 2025 года уязвимость остаётся актуальной как для WhatsApp, так и для Signal. Эксперты советуют по возможности ограничивать статусную информацию в мессенджерах и следить за обновлениями — теперь мяч явно на стороне разработчиков сервисов.

RSS: Новости на портале Anti-Malware.ru