ИИ написал более эффективные фишинговые письма, чем человек

ИИ написал более эффективные фишинговые письма, чем человек

ИИ написал более эффективные фишинговые письма, чем человек

Небольшое исследование показало, что третье поколение алгоритма обработки естественного языка GPT-3 можно использовать вместе с платформами «ИИ как сервис» для массовых рассылок целевого фишинга. Более того, специалисты пришли к выводу, что искусственный интеллект способен составлять лучшие фишинговые письма, чем человек.

На самом деле, исследователи уже давно спорят, выгодно ли злоумышленникам будет натренировать алгоритмы машинного обучения таким образом, чтобы они генерировали качественные фишинговые письма.

Уже сейчас массовый фишинг весьма эффективен, при этом достаточно прост в исполнении и подготовке. Тем не менее организовать нечто вроде целевого фишинга уже гораздо сложнее, поскольку там должны учитываться индивидуальные особенности и потребности жертвы.

Именно эту тему обсудили эксперты на конференциях Black Hat и Defcon. В частности, специалисты представили результаты своего эксперимента, в котором они сравнивали эффективность собственных фишинговых писем с тем, что создал искусственный интеллект.

Оба типа электронных писем содержали ссылки, которые не являлись вредоносными в прямом смысле этого слова. Однако такие URL фиксировали каждый клик и каждый переход, давая исследователям подробную картину эффективности.

В результате специалистов удивил тот факт, что люди куда охотнее кликали на ссылки в тех письмах, которые составил ИИ. Причём отрыв от подготовленных людьми сообщений был действительно значительный.

«Как отметили исследователи, натренировать по-настоящему качественную модель довольно трудно — на это уйдут миллионы долларов. Тем не менее можно прибегать к платформам, предоставляющим подобные возможности по модели "ИИ как услуга"», — передаёт Wired объяснения специалиста Юджина Лима.

Для macOS появился первый зловред, написанный с помощью ИИ

Специалисты Mosyle обнаружили необычную и довольно тревожную вредоносную кампанию под macOS. И дело тут не только в том, что речь снова идёт о криптомайнере. По данным исследователей, это первый зафиксированный в «дикой природе» macOS-зловред, в коде которого явно прослеживаются следы генеративного ИИ.

На момент обнаружения вредонос не детектировался ни одним крупным антивирусным движком, что само по себе уже неприятно.

И это особенно интересно на фоне предупреждений Moonlock Lab годичной давности — тогда исследователи писали, что на подпольных форумах активно обсуждают использование LLM для написания macOS-зловредов. Теперь это перестало быть теорией.

Кампанию назвали SimpleStealth. Распространяется она через фейковый сайт, маскирующийся под популярное ИИ-приложение Grok. Злоумышленники зарегистрировали домен-двойник и предлагают скачать «официальный» установщик для macOS.

После запуска пользователь действительно видит полноценное приложение, которое выглядит и ведёт себя как настоящий Grok. Это классический приём: фейковая оболочка отвлекает внимание, пока вредонос спокойно работает в фоне и остаётся незамеченным как можно дольше.

При первом запуске SimpleStealth аккуратно обходит защитные функции системы. Приложение просит ввести пароль администратора — якобы для завершения настройки. На самом деле это позволяет снять карантинные ограничения macOS и подготовить запуск основной нагрузки.

С точки зрения пользователя всё выглядит нормально: интерфейс показывает привычный ИИ-контент, ничего подозрительного не происходит.

А внутри — криптомайнер Monero (XMR), который позиционируется как «конфиденциальный и неотслеживаемый». Он работает максимально осторожно:

  • запускается только если macOS-устройство бездействует больше минуты;
  • мгновенно останавливается при движении мыши или вводе с клавиатуры;
  • маскируется под системные процессы вроде kernel_task и launchd.

В итоге пользователь может долго не замечать ни повышенной нагрузки, ни утечки ресурсов.

Самая интересная деталь — код зловреда. По данным Mosyle, он буквально кричит о своём ИИ-происхождении: чрезмерно подробные комментарии, повторяющаяся логика, смесь английского и португальского — всё это типичные признаки генерации с помощью LLM.

Именно этот момент делает историю особенно тревожной. ИИ резко снижает порог входа для киберпреступников. Если раньше создание подобного зловреда требовало серьёзной квалификации, теперь достаточно интернета и правильно сформулированных запросов.

Рекомендация здесь стара как мир, но по-прежнему актуальна: не устанавливайте приложения с сомнительных сайтов. Загружайте софт только из App Store или с официальных страниц разработчиков, которым вы действительно доверяете.

Индикаторы компрометации приводим ниже:

Семейство вредоносов: SimpleStealth

Имя распространяемого файла: Grok.dmg

Целевая система: macOS

Связанный домен: xaillc[.]com

Адрес кошелька:

4AcczC58XW7BvJoDq8NCG1esaMJMWjA1S2eAcg1moJvmPWhU1PQ6ZYWbPk3iMsZSqigqVNQ3cWR8MQ43xwfV2gwFA6GofS3

Хеши SHA-256:

  • 553ee94cf9a0acbe806580baaeaf9dea3be18365aa03775d1e263484a03f7b3e (Grok.dmg)
  • e379ee007fc77296c9ad75769fd01ca77b1a5026b82400dbe7bfc8469b42d9c5 (Grok wrapper)
  • 2adac881218faa21638b9d5ccc05e41c0c8f2635149c90a0e7c5650a4242260b (grok_main.py)
  • 688ad7cc98cf6e4896b3e8f21794e33ee3e2077c4185bb86fcd48b63ec39771e (idle_monitor.py)
  • 7813a8865cf09d34408d2d8c58452dbf4f550476c6051d3e85d516e507510aa0 (working_stealth_miner.py)

RSS: Новости на портале Anti-Malware.ru