ИИ написал более эффективные фишинговые письма, чем человек

ИИ написал более эффективные фишинговые письма, чем человек

ИИ написал более эффективные фишинговые письма, чем человек

Небольшое исследование показало, что третье поколение алгоритма обработки естественного языка GPT-3 можно использовать вместе с платформами «ИИ как сервис» для массовых рассылок целевого фишинга. Более того, специалисты пришли к выводу, что искусственный интеллект способен составлять лучшие фишинговые письма, чем человек.

На самом деле, исследователи уже давно спорят, выгодно ли злоумышленникам будет натренировать алгоритмы машинного обучения таким образом, чтобы они генерировали качественные фишинговые письма.

Уже сейчас массовый фишинг весьма эффективен, при этом достаточно прост в исполнении и подготовке. Тем не менее организовать нечто вроде целевого фишинга уже гораздо сложнее, поскольку там должны учитываться индивидуальные особенности и потребности жертвы.

Именно эту тему обсудили эксперты на конференциях Black Hat и Defcon. В частности, специалисты представили результаты своего эксперимента, в котором они сравнивали эффективность собственных фишинговых писем с тем, что создал искусственный интеллект.

Оба типа электронных писем содержали ссылки, которые не являлись вредоносными в прямом смысле этого слова. Однако такие URL фиксировали каждый клик и каждый переход, давая исследователям подробную картину эффективности.

В результате специалистов удивил тот факт, что люди куда охотнее кликали на ссылки в тех письмах, которые составил ИИ. Причём отрыв от подготовленных людьми сообщений был действительно значительный.

«Как отметили исследователи, натренировать по-настоящему качественную модель довольно трудно — на это уйдут миллионы долларов. Тем не менее можно прибегать к платформам, предоставляющим подобные возможности по модели "ИИ как услуга"», — передаёт Wired объяснения специалиста Юджина Лима.

В Security Vision SOAR появились ИИ-ассистент и ML-отчёты

Security Vision выпустила обновление платформы SOAR, добавив в неё несколько заметных функций — локальный ИИ-ассистент, ML-скоринг инцидентов и автоматические ML-отчёты по итогам расследований. Обновление ориентировано на повседневную работу SOC и обработку инцидентов без выхода за контур заказчика.

Security Vision SOAR используется для управления и автоматизации реагирования на инциденты информационной безопасности на всех этапах их жизненного цикла — от выявления и анализа до восстановления и постинцидентной работы.

В основе платформы лежит объектно-ориентированный подход: каждый элемент инцидента — будь то хост, учётная запись, процесс или артефакт — рассматривается как отдельный объект со своей историей, связями и возможными действиями.

Сценарии реагирования в системе динамические: плейбуки автоматически подстраиваются под развитие инцидента, появление новых данных и техник атак. Дополнительно платформа выстраивает цепочку Kill Chain, показывая, как развивалась атака и какие шаги предпринимал злоумышленник.

Система также предлагает рекомендации по дальнейшим действиям, опираясь на контекст инцидента, накопленный опыт SOC и ML-модели, включая оценку вероятности ложного срабатывания.

 

В новом релизе появился локальный ИИ-ассистент в формате чат-бота. Он работает полностью внутри инфраструктуры заказчика и не обращается к внешним сервисам. Ассистент учитывает контекст конкретного инцидента — его стадию, связанные объекты, историю действий и похожие кейсы — и помогает аналитикам разбираться в событиях, расшифровывать логи, понимать техники атак или формировать команды для диагностики. Модель может дообучаться прямо в SOC на результатах обработки инцидентов и аналитических бюллетенях, при этом все данные остаются внутри контура.

Ещё одно нововведение — ML-скоринг критичности инцидентов. Модель автоматически оценивает приоритет события на основе его масштаба и значимости затронутых активов, что упрощает триаж и помогает быстрее понять, какие инциденты требуют внимания в первую очередь.

Также в платформе появился ML-summary — автоматическое резюме по итогам расследования. При закрытии инцидента система формирует краткий отчёт в едином формате: что произошло, какие действия были выполнены, к какому результату они привели и удалось ли атакующему чего-то добиться. Такое резюме сохраняется в карточке инцидента и отчётности, упрощая передачу дел между сменами и снижая потерю контекста.

В целом обновление направлено на то, чтобы упростить и ускорить рутинную работу SOC: быстрее разбираться в инцидентах, снижать нагрузку на аналитиков и сохранять знания внутри команды без необходимости вручную оформлять каждый шаг расследования.

RSS: Новости на портале Anti-Malware.ru