Вышла новая R-Vision TIP с расширенной моделью данных

Вышла новая R-Vision TIP с расширенной моделью данных

Вышла новая R-Vision TIP с расширенной моделью данных

Компания R-Vision выпустила новую версию платформы управления данными киберразведки R-Vision Threat Intelligence Platform (TIP) 1.17. Ключевые изменения затронули модель данных продукта, возможности распределенных сенсоров обнаружения индикаторов компрометации, обработку свободно распространяемых потоков данных об угрозах и формирование бюллетеней.

Для повышения качества описания угроз в R-Vision TIP 1.17 расширили модель данных. Теперь в правилах автоматизации продукта появились фильтры, позволяющие формировать атомарные выборки индикаторов компрометации, связанные с конкретной угрозой, киберпреступной группировкой или вредоносной программой. Для максимального сужения выборки аналитики SOC могут добавлять сразу несколько фильтров. Полученные данные можно экспортировать или, например, отправить в SIEM-систему для поиска релевантных индикаторов компрометации.

В новой версии платформы разработчики также улучшили распределенные сенсоры, предназначенные для сбора индикаторов на удаленных площадках рядом с потоком данных SIEM-системы. Теперь для каждого из них можно добавить свою политику, определяющую срок автоматического удаления собранных данных.

Еще одно новшество R-Vision TIP 1.17 касается обработки open source фидов об угрозах. Теперь при добавлении CSV-фидов пользователю доступен конструктор, в котором можно указать, какие объекты и из каких колонок должна собирать платформа. Это дает возможность собирать из CSV-фидов не только индикаторы компрометации, но и ценный контекст для получения более точной информации об угрозе, например, имена вредоносного ПО, временные метки, название вредоносной группировки или кампании.

Кроме того, в R-Vision TIP 1.17 расширены возможности по формированию информационных материалов об угрозах и уязвимостях. Ранее для каждой уязвимости в платформе нужно было создавать отдельные бюллетени, теперь же можно сформировать единый бюллетень о множественных угрозах. Эта функция призвана повысить удобство работы ИБ-аналитиков при необходимости распространить информацию и рекомендации по защитным мерам от связанных угроз.

«Мы планомерно развиваем как движок обработки TI-данных, так и возможности по удобному и быстрому поиску угроз внутри инфраструктуры. Первое позволяет более эффективно и качественно собирать данные TI, дает пользователям широкий кругозор и охват источников, второе помогает гибко и оперативно определять, подвержена ли инфраструктура организации актуальным для нее угрозам. Широкие возможности по сбору данных из различных источников, нормализация, валидация, механизмы управления жизненным циклом крайне важны, так как позволяют получать знания о ландшафте угроз и своевременно реагировать на них», — отметил Антон Соловей, менеджер продукта R-Vision Threat Intelligence Platform.

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

Мультиагентная система взяла на себя треть задач SOC в Yandex Cloud

Yandex Cloud сообщила, что автоматизировала значительную часть рутинных задач в своём центре мониторинга безопасности (SOC), внедрив мультиагентную систему на базе ИИ. По данным компании, около 39% операций, которые раньше занимали существенную долю рабочего времени аналитиков, теперь выполняют ИИ-помощники. Речь идёт о разборе алертов, первичном анализе инцидентов и поиске данных во внутренних базах.

Внутри SOC несколько ИИ-агентов работают параллельно: один сортирует входящие уведомления, другой перепроверяет данные и выявляет ошибки.

Такой подход позволяет снизить риск некорректных выводов и ускорить фильтрацию ложных срабатываний. По оценкам компании, время на обработку некорректных оповещений сократилось на 86%.

За два года Yandex Cloud прошла путь от экспериментов с ИИ в SOC до полноценной промышленной эксплуатации. Значимую роль сыграли RAG-технологии, которые позволяют моделям работать с актуальными документами и накопленной базой инцидентов. Мультиагентный подход, в свою очередь, сделал возможным разделить задачи между специализированными помощниками, способными учитывать контекст крупных корпоративных инфраструктур.

По словам Евгения Сидорова, директора по информационной безопасности Yandex Cloud, система помогает ускорять обнаружение угроз и автоматизировать обработку данных киберразведки. Он отмечает, что современные SOC-команды всё чаще работают на стыке ИБ и инструментов ИИ.

Мультиагентная система используется не только внутри компании, но и доступна клиентам облачной платформы — в частности, в сервисах Detection and Response и Security Deck. Их уже применяют организации из разных отраслей, включая финтех, здравоохранение и страхование, для автоматизации части процессов мониторинга.

ИИ-помощник, встроенный в сервисы, может разбирать инциденты пошагово, анализировать индикаторы компрометации и артефакты в контексте облачной инфраструктуры, а также предлагать варианты реагирования. Он также собирает дополнительные данные, например по IP-адресам, и формирует рекомендации по предотвращению дальнейших угроз.

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

RSS: Новости на портале Anti-Malware.ru