Вышел Solar Dozor 7.3 с уникальной технологией защиты критичных данных

Вышел Solar Dozor 7.3 с уникальной технологией защиты критичных данных

Вышел Solar Dozor 7.3 с уникальной технологией защиты критичных данных

Компания «Ростелеком-Солар» обновила свою флагманскую DLP-систему Solar Dozor до версии 7.3. В обновлении представлена уникальная для решений данного класса технология глубокого обучения на основе нейронных сетей Faster RCNN. Она позволяет максимально эффективно контролировать передачу критичных данных в графических форматах – изображениях, сканированных копиях, фотографиях и т.п. Кроме того, важным шагом стала реализация в Solar Dozor 7.3 контроля переписки сотрудников в desktop-версии мессенджера Telegram.

Наиболее значимым изменением в Solar Dozor 7.3 стало появление нового инструмента политики безопасности «Графический шаблон», который контролирует передачу критичных данных в графических форматах. С помощью этого инструмента DLP-система с высокой точностью распознает в изображениях такие объекты, как паспортные данные граждан РФ, печати организаций, лицевую и оборотную стороны платежных карт.

Для распознавания графических объектов в решении используется специализированная технология глубокого обучения на основе нейронных сетей Faster RCNN (region-based convolutional neural networks). Скорость работы технологии практически не зависит от размера изображения. Объекты распознаются с учетом различных деформаций – растяжения, поворота, наложения на другие объекты, а также при полном отсутствии текстовой составляющей. Возможности Faster RCNN по эффективности распознавания конфиденциальных данных в графических объектах значительно превосходят традиционно применяемые в DLP-системах технологии OCR, детектирования печатей и прочие.

«Утечки конфиденциальных данных в различных графических форматах – сканах документов, изображениях и т.п. – весьма распространенное явление. В графическом виде часто утекают паспортные данные граждан, данные банковских карт, имеющие высокую ликвидность на черном рынке. В то же время используемые во многих DLP-системах классические инструменты выявления конфиденциальной информации в «графике», вроде технологий OCR, детекторов печатей, паспортов и тому подобных, до сих пор решали эту задачу с переменным успехом. Их эффективность сильно зависит от качества анализируемого изображения и серьезно снижается, если пересылается искаженный объект – растянутый, искривленный, в низком разрешении и т.п. Впервые примененная нами технология глубокого обучения на основе нейронных сетей Faster RCNN способна успешно и быстро выявить попытки слива критичных данных даже в сильно деформированных объектах», – отметила директор Центра продуктов Solar Dozor компании «Ростелеком-Солар» Галина Рябова.

Новая версия Solar Dozor 7.3 сделала большой шаг вперед и в направлении расширения списка контролируемых каналов передачи данных. Теперь с помощью модуля Dozor Endpoint Agent, установленного на рабочих станциях корпоративной сети, можно контролировать переписку сотрудников в desktop-версии мессенджера Telegram и отправку файлов в облачные хранилища с помощью desktop-приложений Яндекс.Диск и Google Drive. Кроме того, в новой версии появились механизмы, которые позволяют распознавать в сообщениях и именах файлов текст, написанный транслитом и (или) содержащий опечатки, и преобразовывать его в корректный текст. Таким образом специалисты по безопасности смогут контролировать передачу текста, который намеренно или случайно был искажен с помощью транслита и (или) опечаток.

Ряд важных изменений был сделан и в одном из ключевых модулей системы – Dozor UBA. Модуль анализа поведения пользователей в версии 7.3 расширил свою функциональность, позволяющую минимизировать риск утечки данных при увольнении сотрудников. Для этого в интерфейсе системы в разделе «Анализ поведения» появился виджет «Признаки увольнения». Кликнув на виджет, офицер безопасности мгновенно получает список сотрудников, в поведении которых присутствуют признаки подготовки к увольнению.

Критерии, по которым система выявляет работников, готовящихся к увольнению, были сформированы в результате практических исследований и наблюдений за поведением уходящих из компаний сотрудников. К таким критериям относится постепенное падение внешней и внутренней активности, оптимизация или сокращение сотрудником рабочего графика, появление новых уникальных контактов в коммуникациях, передача нехарактерных для сотрудника информационных активов и ряд других.

Также в Dozor UBA добавлены новые классы аномалий поведения «Новый неизвестный контакт» и «Новый информационный объект», используемые в том числе и при выявлении увольняющихся сотрудников. Например, эти аномалии будут зафиксированы в поведении сотрудника, который вдруг начал собирать не имеющие отношения к его работе документы компании и пересылать их на неизвестную системе электронную почту. Такое поведение встречается среди сотрудников, принявших решение уйти из компании и решивших повысить свою привлекательность на рынке труда за счет бывшего работодателя.

Для повышения удобства использования системы в Solar Dozor 7.3 был полностью переработан и дополнен новыми критериями фильтр результатов быстрого поиска. Теперь он доступен по нажатию кнопки в отдельном окне, где критерии фильтрации сгруппированы так, чтобы офицер безопасности мог применить к конкретной поисковой выборке критерии из одной или сразу из нескольких групп.

 

Новый фильтр помогает быстро находить нужные данные в уже сформированной поисковой выборке, что сэкономит время на обнаружение утечек и расследование инцидентов.

Кроме того, модуль Dozor Endpoint Agent в новой версии DLP-системы собирает диагностическую информацию с рабочих станций корпоративной сети, что позволяет существенно сократить время на разбор и устранение проблем и сбоев в работе агента на конечных точках.

Кибершпионы в России переключились на НИОКР и инженерные предприятия

Доля кибератак на российские организации, совершаемых с целью шпионажа, заметно выросла. По данным портала киберразведки BI.ZONE Threat Intelligence, в 2025 году на шпионские операции пришлось уже 37% атак (против 21% годом ранее). Иными словами, если раньше шпионской была примерно каждая пятая атака, то теперь — уже почти каждая третья.

При этом госсектор остаётся для таких группировок целью номер один. На органы государственного управления приходится 27% атак шпионских кластеров.

Но интерес злоумышленников всё чаще смещается и в сторону науки и технологий. Доля атак на организации, связанные с НИОКР, за год выросла вдвое — с 7% до 14%.

Как отмечает руководитель BI.ZONE Threat Intelligence Олег Скулкин, рост доли шпионских атак почти в полтора раза стал одним из ключевых трендов 2025 года. По его словам, специалисты наблюдают более 100 кластеров, нацеленных на Россию и страны СНГ, и около 45% из них — это именно шпионские группировки.

Интересно, что такие кластеры сильно различаются по уровню подготовки. В одних случаях злоумышленники применяют технически сложные инструменты, но выдают себя плохо составленными фишинговыми письмами. В других — атаки относительно простые, зато адаптированы под локальный контекст и выглядят максимально правдоподобно.

Так, во второй половине декабря 2025 года группировка Rare Werewolf атаковала научно-исследовательское и производственное предприятие оборонно-промышленного комплекса. Жертве отправили письмо якобы с коммерческим предложением на поставку и монтаж сетевого оборудования — от имени сотрудника научно-производственного центра беспилотных систем.

Во вложении не было классических зловредов. Вместо этого использовались легитимные инструменты: AnyDesk для удалённого доступа, 4t Tray Minimizer для скрытия окон и утилита Blat — для незаметной отправки похищенных данных. Такой подход позволяет дольше оставаться незамеченными и обходить системы защиты.

Впрочем, легитимными программами дело не ограничивается. Почти все шпионские кластеры активно применяют зловред собственной разработки. Новые самописные инструменты помогают обходить средства защиты и закрепляться в инфраструктуре на длительное время.

Кроме того, такие группировки, как правило, не стеснены в ресурсах. Они могут позволить себе покупку дорогостоящих эксплойтов, включая 0-day. Ранее специалисты BI.ZONE фиксировали атаки кластера Paper Werewolf, который, предположительно, приобрёл на теневом форуме эксплойт к уязвимости в WinRAR за 80 тысяч долларов.

Судя по динамике, кибершпионаж становится всё более системным и профессиональным — и явно не собирается сдавать позиции.

RSS: Новости на портале Anti-Malware.ru