Утёкшие в дарквеб данные карт тестируются в течение двух часов

Утёкшие в дарквеб данные карт тестируются в течение двух часов

Утёкшие в дарквеб данные карт тестируются в течение двух часов

Исследователь представил интересную статистику относительно слитых в Сеть данных банковских карт. Оказалось, что достоверность скомпрометированной платёжной информации довольно быстро проверяется различными киберпреступниками.

С того момента, как данные какой-либо карты появляются на нескольких сайтах соответствующей тематики, проходит буквально два часа до попытки осуществления микротранзакции — проверки актуальности.

Такой статистикой поделился специалист компании ThreatPipes Дэвид Гринвуд. Чтобы провести эксперимент, Гринвуд купил предоплаченную карту VISA, а затем попытался продать платёжную информацию на площадках дарквеба.

Однако, по словам Гринвуда, все оказалось не так просто:

«К сожалению, вы не можете просто взять и продать такого рода информацию в дарквебе. Сначала вам необходимо заработать соответствующую репутацию».

Тогда специалист решил пойти другим путём — предложить «скомпрометированные» данные бесплатно. Гринвуд поместил информацию настоящей карты в набор, состоящий из поддельных данных. Там была дата окончания срока действия, код CVV, а также адрес держателя.

В течение двух часов не происходило ровным счётом ничего. Затем исследователь зафиксировал микроплатеж, предназначенный для проверки валидности данных. Такие тесты, как правило, автоматические — выполняются ботами.

В результате Гринвуд смог сделать вывод, что информация любой слитой карты будет протестирована в течение двух часов после публикации в дарквебе.

AppSec.Track научился проверять код, написанный ИИ

AppSec.Track добавил поддержку работы с ИИ и стал первым российским SCA-анализатором, который умеет проверять код прямо в связке с ИИ-ассистентами. Обновление рассчитано в том числе на так называемых «вайб-кодеров» — разработчиков, которые активно используют LLM и ИИ-редакторы для генерации кода.

Новый функционал решает вполне практичную проблему: ИИ всё чаще пишет код сам, но далеко не всегда делает это безопасно.

Модель может «галлюцинировать», предлагать несуществующие пакеты, устаревшие версии библиотек или компоненты с известными уязвимостями. AppSec.Track теперь умеет отлавливать такие ситуации автоматически.

Разработчик может прямо в диалоге с ИИ-ассистентом запросить проверку сгенерированного кода через AppSec.Track. Система проанализирует используемые сторонние компоненты, подсветит потенциальные угрозы и предложит варианты исправления. В основе механизма — протокол MCP (Model Context Protocol), который позволяет безопасно подключать инструменты анализа к LLM.

Как поясняет директор по продукту AppSec.Track Константин Крючков, разработчики всё чаще пишут код «по-новому», а значит, и инструменты анализа должны меняться. Редакторы вроде Cursor или Windsurf уже умеют многое, но им всё равно нужна качественная и актуальная база уязвимостей. Именно её и даёт AppSec.Track, включая учёт внутренних требований безопасности конкретной компании. В итоге даже разработчик без глубокой экспертизы в ИБ может получить более надёжный результат.

Проблема особенно заметна на фоне роста low-coding и vibe-coding подходов. Код создаётся быстрее, а иногда — почти без участия человека, но с точки зрения безопасности в нём могут скрываться неприятные сюрпризы: SQL-инъекции, логические ошибки или небезопасные зависимости. Как отмечает старший управляющий директор AppSec Solutions Антон Башарин, ИИ-ассистенты не заменяют классические практики DevSecOps — особенно когда речь идёт об open source, где информация об угрозах обновляется быстрее, чем обучаются модели.

Новый функционал AppSec.Track ориентирован на профессиональные команды разработки, которые уже внедряют ИИ в свои процессы. Он позволяет сохранить требования Secure by Design и снизить риски даже в условиях активного использования генеративного кода.

RSS: Новости на портале Anti-Malware.ru