Утилита расшифровки от Kaspersky теперь дешифрует еще два вредоноса

Утилита расшифровки от Kaspersky теперь дешифрует еще два вредоноса

Утилита расшифровки от Kaspersky теперь дешифрует еще два вредоноса

«Лаборатория Касперского» пополнила проект No More Ransom обновлённым инструментом RakhniDecryptor, который теперь может расшифровывать файлы, пострадавшие от двух новых вымогателей.

На сайте nomoreransom.org теперь можно найти новую версию RakhniDecryptor, которую оснастили функцией расшифровки файлов, зашифрованных зловредами Yatron и FortuneCrypt.

Если вы пострадали от одного из этих двух вредоносов, можете попробовать вернуть свои файлы бесплатно с помощью утилиты от «Лаборатории Касперского».

Эксперты российской антивирусной компании подчеркнули, что разработка инструментов дешифровки очень важна, так как это помогает лишить злоумышленников прибыли. В конечном счёте «Лаборатория Касперского» ставит себе задачу — сделать бизнес киберпреступников невыгодным.

Напомним, что 26 июля проекту No More Ransom исполнилось три года. По словам Европола, за это время No More Ransom привёл к убыткам киберпреступников на сумму $108 миллионов. А все потому, что многие пользователи скачивали с сайта проекта бесплатные инструменты для расшифровки файлов.

ИИ учится задавать вопросы сам себе — и от этого становится умнее

Даже самые продвинутые ИИ-модели пока что во многом лишь повторяют — учатся на примерах человеческой работы или решают задачи, которые им заранее придумали люди. Но что если искусственный интеллект сможет учиться почти как человек — сам задавать себе интересные вопросы и искать на них ответы?

Похоже, это уже не фантазия. Исследователи из Университета Цинхуа, Пекинского института общего искусственного интеллекта (BIGAI) и Университета штата Пенсильвания показали, что ИИ способен осваивать рассуждение и программирование через своеобразную «игру с самим собой».

Проект получил название Absolute Zero Reasoner (AZR). Его идея проста и изящна одновременно. Сначала языковая модель сама придумывает задачи по программированию на Python — достаточно сложные, но решаемые. Затем она же пытается их решить, после чего проверяет себя самым честным способом: запускает код.

 

Если решение сработало — отлично. Если нет — ошибка становится сигналом для обучения. На основе успехов и провалов система дообучает исходную модель, постепенно улучшая и умение формулировать задачи, и способность их решать.

Исследователи протестировали подход на открытой языковой модели Qwen с 7 и 14 миллиардами параметров. Оказалось, что такой «самообучающийся» ИИ заметно улучшает навыки программирования и логического мышления — и в некоторых тестах даже обгоняет модели, обученные на вручную отобранных человеческих данных.

 

По словам аспиранта Университета Цинхуа Эндрю Чжао, одного из авторов идеи, подход напоминает реальный процесс обучения человека:

«Сначала ты копируешь родителей и учителей, но потом начинаешь задавать собственные вопросы. И в какой-то момент можешь превзойти тех, кто тебя учил».

Идея «самоигры» для ИИ обсуждается не первый год — ещё раньше её развивали такие исследователи, как Юрген Шмидхубер и Пьер-Ив Удейер. Но в Absolute Zero особенно интересно то, как растёт сложность задач: чем умнее становится модель, тем более сложные вопросы она начинает ставить перед собой.

«Уровень сложности растёт вместе с возможностями модели», — отмечает исследователь BIGAI Цзилун Чжэн.

Сейчас подход работает только там, где результат можно легко проверить — в программировании и математике. Но в будущем его хотят применить и к более «жизненным» задачам: работе ИИ-агентов в браузере, офисных сценариях или автоматизации процессов. В таких случаях модель могла бы сама оценивать, правильно ли агент действует.

«В теории это может стать путём к суперинтеллекту», — признаёт Чжэн.

RSS: Новости на портале Anti-Malware.ru