DeepExploit — опубликован инструмент для пентеста с машинным обучением

DeepExploit — опубликован инструмент для пентеста с машинным обучением

DeepExploit — опубликован инструмент для пентеста с машинным обучением

Пользователь 13o-bbr-bbq опубликовал на GitHub инструмент для автоматизированного тестирования на проникновение (пентест). Инструмент, получивший название Deep Exploit, был представлен на Black Hat USA 2018.

Согласно размещенной информации, DeepExploit связан с Metasploit, и имеет два основных режима:

  1. Intelligence mode (Интеллектуальный режим): DeepExploit идентифицирует статус всех открытых портов на целевом сервере и выполняет эксплойт, применяя машинное обучение;
  2. Режим брутфорс (Brute force mode): DeepExploit поочередно выполняет эксплойты, основываясь на комбинации «Модуль эксплойта — Цель — Пейлоад», учитывая имя продукта и номер порта устройства пользователя.

Ключевыми особенностями DeepExploit являются:

  • Самообучение. DeepExploit может сам учиться методу использования эксплойтов, человеку не нужно готовить данные для обучения.
  • Эффективное выполнение эксплойтов. DeepExploit может «прицельно» атаковать эксплойтами, используя данные, полученные в ходе самообучения.
  • Глубокое проникновение. Если DeepExploit успешно использует эксплойт на целевом сервере, он дополнительно выполняет эксплойт, атакуя другие внутренние серверы.
  • Крайне легкое управление. Все, что вам нужно — ввести одну команду.

Актуальная версия DeepExploit находится в статусе beta, однако она может: собирать разведданные, моделировать угрозы, анализировать уязвимости, эксплуатировать их, составлять отчеты.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

В PT Sandbox внедрили ML-модель для поиска скрытых киберугроз

В PT Sandbox появилась новая модель машинного обучения, которая помогает выявлять неизвестные и скрытые вредоносные программы. Песочница анализирует поведение программ по сетевой активности и может заметить угрозы, которые не удаётся поймать обычными методами.

Разработчики отмечают, что один из самых надёжных способов обнаружить зловред — это изучение подозрительных следов в сетевом трафике.

Новая ML-модель как раз обучена отличать «чистые» данные от вредоносных, разбирая пакеты и фиксируя нетипичные признаки поведения.

За последние полгода в песочницу добавили сотни новых правил и сигнатур для анализа трафика, что позволило расширить набор инструментов для поиска программ-вымогателей и атак нулевого дня.

Ещё одно заметное нововведение — проверка QR-кодов. Согласно исследованию, почти половина писем с QR-ссылками содержит зловред или спам. Теперь система может извлекать такие ссылки из писем и вложений и анализировать их на предмет угроз.

Появилась и дополнительная гибкость для специалистов по безопасности: можно писать собственные YARA-правила, настраивать очередь проверки и задавать приоритеты анализа в зависимости от источника или типа файла.

Кроме того, PT Sandbox научилась работать с S3-совместимыми облачными и локальными хранилищами — это позволяет проверять безопасность загружаемых данных вроде кода, изображений или архивов.

И наконец, через веб-интерфейс теперь можно вручную запускать поведенческий анализ отдельных файлов. Это даёт возможность глубже исследовать подозрительные объекты и быстрее реагировать на потенциальные атаки.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru