DeepExploit — опубликован инструмент для пентеста с машинным обучением

DeepExploit — опубликован инструмент для пентеста с машинным обучением

DeepExploit — опубликован инструмент для пентеста с машинным обучением

Пользователь 13o-bbr-bbq опубликовал на GitHub инструмент для автоматизированного тестирования на проникновение (пентест). Инструмент, получивший название Deep Exploit, был представлен на Black Hat USA 2018.

Согласно размещенной информации, DeepExploit связан с Metasploit, и имеет два основных режима:

  1. Intelligence mode (Интеллектуальный режим): DeepExploit идентифицирует статус всех открытых портов на целевом сервере и выполняет эксплойт, применяя машинное обучение;
  2. Режим брутфорс (Brute force mode): DeepExploit поочередно выполняет эксплойты, основываясь на комбинации «Модуль эксплойта — Цель — Пейлоад», учитывая имя продукта и номер порта устройства пользователя.

Ключевыми особенностями DeepExploit являются:

  • Самообучение. DeepExploit может сам учиться методу использования эксплойтов, человеку не нужно готовить данные для обучения.
  • Эффективное выполнение эксплойтов. DeepExploit может «прицельно» атаковать эксплойтами, используя данные, полученные в ходе самообучения.
  • Глубокое проникновение. Если DeepExploit успешно использует эксплойт на целевом сервере, он дополнительно выполняет эксплойт, атакуя другие внутренние серверы.
  • Крайне легкое управление. Все, что вам нужно — ввести одну команду.

Актуальная версия DeepExploit находится в статусе beta, однако она может: собирать разведданные, моделировать угрозы, анализировать уязвимости, эксплуатировать их, составлять отчеты.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Российские учёные научили ИИ ловить фейковые фото и нелепые изображения

Исследователи из AIRI, Сколтеха, MWS AI и МФТИ по-новому решили одну из наиболее сложных задач компьютерного зрения — выявление изображений с нелогичным содержанием, вроде рыцаря с мобильником или пингвина на велосипеде.

Разработанный ими метод TLG (Through the Looking Glass, «В Зазеркалье») использует ИИ для создания текстовых описаний картинок и обнаружения противоречий при сопоставлении с визуальным содержанием.

В комментарии для «Известий» один из соавторов проекта, доктор компьютерных наук Александр Панченко пояснил: существующие ИИ-модели хорошо распознают элементы картинок, но плохо улавливают контекст — далеко не всегда понимают совместимость представленных объектов с точки зрения здравого смысла.

Чтобы проверить действенность своего подхода, экспериментаторы создали датасет, включив него 824 изображения с нелепыми ситуациями. Тестирование алгоритма показало точность распознавания до 87,5%, что на 0,5-15% выше показателей других существующих моделей, а также большую экономию вычислительных ресурсов.

Новаторская разработка, по словам Панченко, способна повысить надежность систем компьютерного зрения. После доработки и дообучения ее также можно будет использовать для модерации контента — к примеру, для выявления фейковых фото.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru