Цель каждой второй фишинговой атаки – деньги пользователей

Цель каждой второй фишинговой атаки – деньги пользователей

Цель каждой второй фишинговой атаки – деньги пользователей

Почти половина фишинговых атак в 2016 году была нацелена на прямую кражу денег у пользователей – к такому выводу пришли эксперты «Лаборатории Касперского», проанализировав финансовые угрозы прошлого года. По сравнению с 2015-м, число финансовых фишинговых атак увеличилось на 13 процентных пунктов и составило 47%.

За всю историю изучения финансового фишинга «Лабораторией Касперского» этот показатель самый высокий. 

Основной целью злоумышленников при таких атаках является сбор конфиденциальной информации, открывающей доступ к чужим деньгам. Фишеры охотятся за номерами банковских счетов или карт, номерами социального страхования, логинами и паролями от систем онлайн-банкинга или платежных систем. 

Излюбленной мишенью фишеров традиционно оказались банки: в каждой четвертой атаке они использовали поддельную банковскую информацию, таким образом доля атак на эти финансовые организации по сравнению с 2015 годом увеличилась на 8 процентных пунктов. Кроме того, приблизительно каждая восьмая фишинговая атака была направлена на пользователей платежных систем, а каждая десятая – на покупателей интернет-магазинов.   

 

Распределение различных типов финансовых фишинговых атак в 2016 году

 

«Фишинг, направленный на пользователей финансовых сервисов, является для киберпреступников одним из самых эффективных способов украсть деньги. Атаки с использованием методов социальной инженерии не требуют от преступника высокой технической квалификации и больших инвестиций. Пользуясь невнимательностью своих жертв и их технической неграмотностью, мошенники получают доступ к персональной финансовой информации пользовтаелей и, в дальнейшем, к их деньгам, – рассказывает Надежда Демидова, старший контент-аналитик «Лаборатории Касперского». – Разумеется, подавляющее большинство фишинговых атак легко распознать. Но статистика говорит о том, что очень много людей продолжают проявлять беспечность в Интернете, даже когда дело касается денег».

Чтобы не стать жертвой фишинга, «Лаборатория Касперского» рекомендует пользователям всегда поверять подлинность веб-сайта, на котором они собираются вводить финансовую информацию, и проверять, защищено ли соединение безопасным протоколом https. Кроме того, не стоит переходить по подозрительным ссылкам и выполнять все требования, изложенные в электронных письмах от имени банка, если они вызывают у вас даже самую малую долю сомнения – лучше в этом случае связаться с финансовой организацией напрямую. И конечно же, необходимо использовать защитное решение, включающее в себя проактивные функции распознавания и блокирования фишинга.

AppSec.Track научился проверять код, написанный ИИ

AppSec.Track добавил поддержку работы с ИИ и стал первым российским SCA-анализатором, который умеет проверять код прямо в связке с ИИ-ассистентами. Обновление рассчитано в том числе на так называемых «вайб-кодеров» — разработчиков, которые активно используют LLM и ИИ-редакторы для генерации кода.

Новый функционал решает вполне практичную проблему: ИИ всё чаще пишет код сам, но далеко не всегда делает это безопасно.

Модель может «галлюцинировать», предлагать несуществующие пакеты, устаревшие версии библиотек или компоненты с известными уязвимостями. AppSec.Track теперь умеет отлавливать такие ситуации автоматически.

Разработчик может прямо в диалоге с ИИ-ассистентом запросить проверку сгенерированного кода через AppSec.Track. Система проанализирует используемые сторонние компоненты, подсветит потенциальные угрозы и предложит варианты исправления. В основе механизма — протокол MCP (Model Context Protocol), который позволяет безопасно подключать инструменты анализа к LLM.

Как поясняет директор по продукту AppSec.Track Константин Крючков, разработчики всё чаще пишут код «по-новому», а значит, и инструменты анализа должны меняться. Редакторы вроде Cursor или Windsurf уже умеют многое, но им всё равно нужна качественная и актуальная база уязвимостей. Именно её и даёт AppSec.Track, включая учёт внутренних требований безопасности конкретной компании. В итоге даже разработчик без глубокой экспертизы в ИБ может получить более надёжный результат.

Проблема особенно заметна на фоне роста low-coding и vibe-coding подходов. Код создаётся быстрее, а иногда — почти без участия человека, но с точки зрения безопасности в нём могут скрываться неприятные сюрпризы: SQL-инъекции, логические ошибки или небезопасные зависимости. Как отмечает старший управляющий директор AppSec Solutions Антон Башарин, ИИ-ассистенты не заменяют классические практики DevSecOps — особенно когда речь идёт об open source, где информация об угрозах обновляется быстрее, чем обучаются модели.

Новый функционал AppSec.Track ориентирован на профессиональные команды разработки, которые уже внедряют ИИ в свои процессы. Он позволяет сохранить требования Secure by Design и снизить риски даже в условиях активного использования генеративного кода.

RSS: Новости на портале Anti-Malware.ru