Представлены работающие на GPU протитипы руткита и кейлоггера для Linux

Представлены работающие на GPU протитипы руткита и кейлоггера для Linux

Исследователи безопасности из команды Team Jellyfish воплотили в жизнь теоретический метод применения GPU для отслеживания активности в системе и подготовили рабочие прототипы руткита и кейлоггера, выполняемые на GPU для скрытия своего присутствия в системе.

Руткит и кейлоггер примечательны тем, что получив доступ к GPU, они обходятся без традиционных привязок и изменений кода ядра операционной системы. Отслеживание буфера, содержащего данные о нажатых клавишах, производится непосредственно из GPU при помощи DMA. На CPU выполняется только инициализация, после чего вся активность руткита ограничивается GPU, пишет opennet.ru.

В настоящее время реализована только работа на системах с отдельными видеокартами (GPU, интегрированные с CPU, пока не поддерживаются) AMD и NVIDIA. Прототип руткита реализован в пространстве пользователя и загружается при помощи LD_PRELOAD. Для организации выполнения кода на GPU применяется OpenCL API, что требует наличия драйверов с поддержкой OpenCL.

После загрузки все данные размещаются в видеопамяти, что затрудняет обнаружение руткита. Перехват содержимого памяти CPU производится через DMA. Выполнение на стороне GPU также позволяет задействовать средства GPU для выполнения сложных вычислений. 

Нейросеть для ЖКХ научилась материться в первый месяц обучения

Разработчикам отечественного голосового помощника для сферы ЖКХ пришлось «переучивать» систему после того, как в процессе обучения бот освоил ненормативную лексику. Этот случай наглядно показал, насколько критично качество данных, на которых обучаются нейросети.

О возникшей проблеме рассказал ТАСС президент Национального объединения организаций в сфере технологий информационного моделирования (НОТИМ) Михаил Викторов на Сибирском строительном форуме, который проходит в Новосибирске.

«Приведу забавный случай: нейросеть учится, и буквально уже в первый месяц разработчики обнаружили такую коллизию — нейросеть научилась мату. Как говорится, с кем поведёшься, от того и наберёшься. Эту проблему, конечно, пришлось устранять. Но это в том числе показатель активного взаимодействия с нашими гражданами», — рассказал Михаил Викторов.

При этом, по его словам, внедрение ботов позволило сократить число операторов кол-центров в 5–6 раз без потери качества обслуживания. Нейросетевые инструменты способны обрабатывать до 90% входящих обращений.

Уровень удовлетворённости качеством обслуживания, по оценке Викторова, составляет около 80%. Передавать звонки операторам целесообразно лишь в экстренных случаях — например, при аварийных ситуациях.

Эксперты ранее отмечали, что именно данные, на которых обучается ИИ, являются ключевой причиной появления некорректных или предвзятых ответов нейросетевых инструментов.

RSS: Новости на портале Anti-Malware.ru