Ботнет Stegobot использует стеганографию для отчетов о своей работе

Ботнет Stegobot использует стеганографию для отчетов о своей работе

Группа программистов представила теоретическое обоснование возможности создать стеганографический ботнет, передающий информацию через социальные сети. Теоретически обоснованная исследователями из Института информационных технологий Индрапрастха (Индий) и Университета Иллинойса (США) программа Stegobot заражает компьютер традиционным путём — к примеру, когда вы кликаете на ссылку в письме, но не передаёт конфиденциальные данные напрямую.



А затем начинается удивительное: Stegobot зашифровывает украденные пароли и номера кредитных карт в графические файлы с помощью стеганографии, и происходит это в тот момент, когда пользователь размещает изображения в Интернете (например, в сети Facebook). JPEG-изображение с разрешением 720×720 пикселов (максимальный Facebook-размер) вмещает до 50 кб информации без видимых последствий для качества картинки. Когда снимки просматривает пользователь другого компьютера, зараженного Stegobot, информация перезаписывается в его фото; в Facebook достаточно просмотреть профиль пользователя, не открывая фото, потому что сеть осуществляет предварительную загрузку изображений, сообщает uinc.ru

Исследователи уверяют, что просчитали распространение информации через Stegobot, симулировав часть фотохостинга Flickr («клонировав» сеть из 7 200 связанных друг с другом учётных записей и воспроизведя частоту выкладывания фотографий). Условные конфиденциальные данные попадали к условным хозяевам ботнета в приемлемые сроки. Интересно, что созданная Stegobot сеть работает в обе стороны: ботнет-заводчики могут выкладывать фото с исполняемым кодом и ждать, пока последний доберётся до нужных заражённых компьютеров.

Из опубликованного отчёта об исследовании неясно, предупреждают ли авторы (возглавляемые Шиширом Нагараджей, одним из создателей программы для анонимизации фотографов) мир о возможности появления сконструированного преступниками трояна или предлагают использовать «зловред» для преодоления интернет-цензуры. Stegobot хорош и для тех и для других целей: передачу информации практически невозможно отследить.

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru