DeepSeek-R1 генерирует больше уязвимостей в коде при запрещённых темах

DeepSeek-R1 генерирует больше уязвимостей в коде при запрещённых темах

DeepSeek-R1 генерирует больше уязвимостей в коде при запрещённых темах

Исследователи из CrowdStrike обнаружили необычное и тревожное поведение китайской модели DeepSeek-R1: она начинает генерировать заметно более уязвимый код, если в запросах появляются политически чувствительные темы для Китая. То есть сама формулировка запроса — например, упоминание Тибета или уйгуров — снижает качество и безопасность создаваемого ИИ кода.

По данным CrowdStrike, без «триггерных» слов модель допускает серьёзные уязвимости примерно в 19% случаев.

Но стоит добавить геополитический контекст, вероятность повышается почти на 50%. Так, при задаче создать компонент для системы, «используемой на промышленном объекте в Тибете», доля небезопасного кода выросла с 19% до 27,2%.

Исследователи подчёркивают: сами «политические» слова никак не связаны с задачей кодирования. Однако модель начинает вести себя нестабильно — от использования небезопасных функций до генерации откровенно нерабочего кода.

В одном примере DeepSeek-R1 написала вебхук для PayPal в виде PHP-кода, который не только содержал ключи в коде, но и вообще не являлся валидным PHP. Несмотря на это, модель уверяла, что всё сделано «по лучшим практикам PayPal».

 

В другом тесте исследователи попросили создать Android-приложение для сообщества уйгуров: регистрация, вход, админ-панель. Приложение работало, но не имело ни аутентификации, ни управления сессиями.

В 35% случаев DeepSeek-R1 вообще не использовала хеширование или применяла небезопасные методы. А вот для похожего задания, но про футбольный фан-клуб, таких проблем почти не было.

CrowdStrike также сообщила, что у модели, судя по всему, есть «встроенный рубильник»:

«DeepSeek-R1 начинает внутренне планировать решение задачи, но в последний момент отказывается отвечать на запросы, связанные, например, с Фалуньгун. В 45% таких случаев модель пишет: “Я не могу помочь с этим запросом“».

По мнению исследователей, причина кроется в обучении модели — вероятно, разработчики встроили специальные ограничения, чтобы соответствовать китайским законам и правилам цензуры.

CrowdStrike подчёркивает: наличие «триггерных слов» не гарантирует, что ИИ всегда выдаст небезопасный код. Но в среднем качество ощутимо падает.

Проблемы с безопасностью кода наблюдаются и у других инструментов. Проверка OX Security показала (PDF), что Lovable, Base44 и Bolt создают уязвимый по умолчанию код даже при запросе «безопасной» реализации. Все три инструмента сгенерировали вики-приложение с XSS-уязвимостью, позволяющей выполнять произвольный JavaScript. Хуже того, модель Lovable могла «пропатчить» уязвимость только в двух из трёх попыток, что создаёт ложное ощущение безопасности.

Кибершпионы в России переключились на НИОКР и инженерные предприятия

Доля кибератак на российские организации, совершаемых с целью шпионажа, заметно выросла. По данным портала киберразведки BI.ZONE Threat Intelligence, в 2025 году на шпионские операции пришлось уже 37% атак (против 21% годом ранее). Иными словами, если раньше шпионской была примерно каждая пятая атака, то теперь — уже почти каждая третья.

При этом госсектор остаётся для таких группировок целью номер один. На органы государственного управления приходится 27% атак шпионских кластеров.

Но интерес злоумышленников всё чаще смещается и в сторону науки и технологий. Доля атак на организации, связанные с НИОКР, за год выросла вдвое — с 7% до 14%.

Как отмечает руководитель BI.ZONE Threat Intelligence Олег Скулкин, рост доли шпионских атак почти в полтора раза стал одним из ключевых трендов 2025 года. По его словам, специалисты наблюдают более 100 кластеров, нацеленных на Россию и страны СНГ, и около 45% из них — это именно шпионские группировки.

Интересно, что такие кластеры сильно различаются по уровню подготовки. В одних случаях злоумышленники применяют технически сложные инструменты, но выдают себя плохо составленными фишинговыми письмами. В других — атаки относительно простые, зато адаптированы под локальный контекст и выглядят максимально правдоподобно.

Так, во второй половине декабря 2025 года группировка Rare Werewolf атаковала научно-исследовательское и производственное предприятие оборонно-промышленного комплекса. Жертве отправили письмо якобы с коммерческим предложением на поставку и монтаж сетевого оборудования — от имени сотрудника научно-производственного центра беспилотных систем.

Во вложении не было классических зловредов. Вместо этого использовались легитимные инструменты: AnyDesk для удалённого доступа, 4t Tray Minimizer для скрытия окон и утилита Blat — для незаметной отправки похищенных данных. Такой подход позволяет дольше оставаться незамеченными и обходить системы защиты.

Впрочем, легитимными программами дело не ограничивается. Почти все шпионские кластеры активно применяют зловред собственной разработки. Новые самописные инструменты помогают обходить средства защиты и закрепляться в инфраструктуре на длительное время.

Кроме того, такие группировки, как правило, не стеснены в ресурсах. Они могут позволить себе покупку дорогостоящих эксплойтов, включая 0-day. Ранее специалисты BI.ZONE фиксировали атаки кластера Paper Werewolf, который, предположительно, приобрёл на теневом форуме эксплойт к уязвимости в WinRAR за 80 тысяч долларов.

Судя по динамике, кибершпионаж становится всё более системным и профессиональным — и явно не собирается сдавать позиции.

RSS: Новости на портале Anti-Malware.ru