В МФТИ создали ML-алгоритм для выявления криптокошельков мошенников

В МФТИ создали ML-алгоритм для выявления криптокошельков мошенников

В МФТИ создали ML-алгоритм для выявления криптокошельков мошенников

Выпускник Физтеха разработал алгоритм машинного обучения, позволяющий выявить и заблокировать сибил-аккаунты, созданные мошенниками для кражи криптовалютных токенов, которые бесплатно раздают в рамках рекламных акций.

Разработка протестирована на 2,5 млн криптокошельков и показала точность обнаружения фальшивок 90% — в два раза выше аналогов, используемых в криптоиндустрии с целью защиты airdrop-кампаний от атак злоумышленников.

Для незаконного получения вознаграждений, предлагаемых при продвижении криптопроектов, мошенник может создать целую сеть фейковыз кошельков (сибил-аккантов). Подобные злоупотребления искажают метрики, провоцируют падение курса токенов и в итоге подрывают доверие к проекту.

«Мой алгоритм анализирует десятки параметров: от поведенческих паттернов и кросс-чейн-активности до сетевых связей между кошельками, — пояснил автор дипломной работы Алексей Саплин. — Это позволяет выявлять даже сложные кластеры, которые остаются незамеченными при использовании стандартных методов. Алгоритм показал точность 90%, а большинство существующих решений показывают эффективность на уровне 45–60%».

Тестирование разработки проводилось в рамках открытого конкурса, организованного Layer Zero, благодаря этому проект смог аннулировать несправедливое распределение токенов на сумму $10,2 миллиона.

Созданный Саплиным ML-алгоритм можно заточить и под другие криптопроекты; в МФТИ уже ведутся работы в этом направлении. Сам автор собирается продолжить исследования в аспирантуре и надеется, что ему в итоге удастся создать универсальный инструмент выявления мошеннических схем в различных блокчейн-экосистемах.

Linux-ботнет SSHStalker старомоден: C2-коммуникации только по IRC

Специалисты по киберразведке из Flare обнаружили Linux-ботнет, операторы которого отдали предпочтение надежности, а не скрытности. Для наращивания потенциала SSHStalker использует шумные SSH-сканы и 15-летние уязвимости, для C2-связи — IRC.

Новобранец пока просто растет, либо проходит обкатку: боты подключаются к командному серверу и переходят в состояние простоя. Из возможностей монетизации выявлены сбор ключей AWS, сканирование сайтов, криптомайнинг и генерация DDoS-потока.

Первичный доступ к Linux-системам ботоводам обеспечивают автоматизированные SSH-сканы и брутфорс. С этой целью на хосты с открытым портом 22 устанавливается написанный на Go сканер, замаскированный под опенсорсную утилиту Nmap.

В ходе заражения также загружаются GCC для компиляции полезной нагрузки, IRC-боты с вшитыми адресами C2 и два архивных файла, GS и bootbou. Первый обеспечивает оркестрацию, второй — персистентность и непрерывность исполнения (создает cron-задачу на ежеминутный запуск основного процесса бота и перезапускает его в случае завершения).

Чтобы повысить привилегии на скомпрометированном хосте, используются эксплойты ядра, суммарно нацеленные на 16 уязвимостей времен Linux 2.6.x (2009-2010 годы).

 

Владельцы SSHStalker — предположительно выходцы из Румынии, на это указывает ряд найденных артефактов.

Исследователи также обнаружили файл со свежими результатами SSH-сканов (около 7 тыс. прогонов, все за прошлый месяц). Большинство из них ассоциируются с ресурсами Oracle Cloud в США, Евросоюзе и странах Азиатско-Тихоокеанского региона.

RSS: Новости на портале Anti-Malware.ru