Новый вектор кражи данных: скрытые инструкции в изображениях для ИИ

Новый вектор кражи данных: скрытые инструкции в изображениях для ИИ

Новый вектор кражи данных: скрытые инструкции в изображениях для ИИ

Исследователи из компании Trail of Bits придумали новый способ атаки на ИИ-системы — через изображения с «невидимыми» инструкциями. Метод позволяет красть пользовательские данные, подсовывая скрытые промпты в картинки, которые потом обрабатываются моделью.

Фокус в том, что изображение изначально создаётся в полном разрешении и выглядит абсолютно нормально для человеческого глаза.

Но когда ИИ-система автоматически снижает качество картинки — например, чтобы сэкономить ресурсы, — в ней проявляются скрытые паттерны. Всё дело в том, что алгоритмы ресемплинга (nearest neighbor, bilinear или bicubic) создают артефакты, и на их фоне может «всплыть» спрятанный текст.

Так, в примере от Trail of Bits при использовании bicubic-декодирования тёмные зоны на картинке превращались в красные, а внутри появлялась чёткая чёрная надпись. ИИ воспринимал её как часть пользовательских инструкций и выполнял. Снаружи казалось, что всё работает как обычно, но фактически модель выполняла скрытые команды, что может привести к утечке данных.

 

На практике исследователи показали, что с помощью такого подхода удалось через Gemini CLI вытянуть данные из Google Calendar и переслать их на произвольный адрес — при этом инструмент Zapier MCP автоматически подтвердил операцию из-за настроек «trust=True».

Атака, по словам авторов, универсальна и требует лишь подстройки под конкретный алгоритм уменьшения изображения. Trail of Bits протестировала её на ряде систем:

  • Google Gemini CLI,
  • Vertex AI Studio,
  • веб-интерфейс Gemini,
  • Gemini API через llm CLI,
  • Google Assistant на Android,
  • Genspark.

Чтобы доказать работоспособность метода, исследователи даже выложили в открытый доступ свой инструмент Anamorpher (пока в бета-версии), который генерирует такие «аноморфные» изображения.

Что советуют в качестве защиты? Во-первых, ограничивать размеры картинок при загрузке. Во-вторых, если ресемплинг всё же нужен — показывать пользователю, какой именно вариант изображения попадёт в LLM. И, конечно, запрашивать подтверждение для любых чувствительных действий, если в картинке вдруг обнаружен текст. Но главное, подчеркивают в Trail of Bits, — это внедрение более надёжных архитектурных подходов, которые смогут противостоять не только мультимодальным, но и любым другим атакам через инъекции промптов.

Кибершпионы в России переключились на НИОКР и инженерные предприятия

Доля кибератак на российские организации, совершаемых с целью шпионажа, заметно выросла. По данным портала киберразведки BI.ZONE Threat Intelligence, в 2025 году на шпионские операции пришлось уже 37% атак (против 21% годом ранее). Иными словами, если раньше шпионской была примерно каждая пятая атака, то теперь — уже почти каждая третья.

При этом госсектор остаётся для таких группировок целью номер один. На органы государственного управления приходится 27% атак шпионских кластеров.

Но интерес злоумышленников всё чаще смещается и в сторону науки и технологий. Доля атак на организации, связанные с НИОКР, за год выросла вдвое — с 7% до 14%.

Как отмечает руководитель BI.ZONE Threat Intelligence Олег Скулкин, рост доли шпионских атак почти в полтора раза стал одним из ключевых трендов 2025 года. По его словам, специалисты наблюдают более 100 кластеров, нацеленных на Россию и страны СНГ, и около 45% из них — это именно шпионские группировки.

Интересно, что такие кластеры сильно различаются по уровню подготовки. В одних случаях злоумышленники применяют технически сложные инструменты, но выдают себя плохо составленными фишинговыми письмами. В других — атаки относительно простые, зато адаптированы под локальный контекст и выглядят максимально правдоподобно.

Так, во второй половине декабря 2025 года группировка Rare Werewolf атаковала научно-исследовательское и производственное предприятие оборонно-промышленного комплекса. Жертве отправили письмо якобы с коммерческим предложением на поставку и монтаж сетевого оборудования — от имени сотрудника научно-производственного центра беспилотных систем.

Во вложении не было классических зловредов. Вместо этого использовались легитимные инструменты: AnyDesk для удалённого доступа, 4t Tray Minimizer для скрытия окон и утилита Blat — для незаметной отправки похищенных данных. Такой подход позволяет дольше оставаться незамеченными и обходить системы защиты.

Впрочем, легитимными программами дело не ограничивается. Почти все шпионские кластеры активно применяют зловред собственной разработки. Новые самописные инструменты помогают обходить средства защиты и закрепляться в инфраструктуре на длительное время.

Кроме того, такие группировки, как правило, не стеснены в ресурсах. Они могут позволить себе покупку дорогостоящих эксплойтов, включая 0-day. Ранее специалисты BI.ZONE фиксировали атаки кластера Paper Werewolf, который, предположительно, приобрёл на теневом форуме эксплойт к уязвимости в WinRAR за 80 тысяч долларов.

Судя по динамике, кибершпионаж становится всё более системным и профессиональным — и явно не собирается сдавать позиции.

RSS: Новости на портале Anti-Malware.ru