Разработчики из России сократили расходы на ИИ-разметку втрое

Разработчики из России сократили расходы на ИИ-разметку втрое

Разработчики из России сократили расходы на ИИ-разметку втрое

Российские исследователи и разработчики из R&D-центра Т-Технологий, AIRI, ВШЭ, Университета Иннополис и Центра практического ИИ Сбера создали ATGen — инструмент, который помогает значительно сократить затраты на сбор и разметку данных для обучения генеративных языковых моделей. По их расчётам, расходы можно уменьшить в три раза.

Разработку представили на конференции ACL 2025 в Вене — одной из крупнейших в области вычислительной лингвистики.

Главная проблема при обучении ИИ для конкретных задач, например в юриспруденции или медицине, — это стоимость данных. Разметка требует либо привлечения экспертов, что дорого, либо значительных затрат на доступ к API больших языковых моделей. ATGen помогает обойтись меньшим объёмом данных — и при этом сохранить или даже улучшить качество модели.

Он работает по принципу активного обучения: модель сама выбирает, какие примеры ей нужны, чтобы эффективнее учиться. Это позволяет сократить объём ручной разметки в 2–4 раза.

ATGen — это не просто код. В нём есть:

  • все современные стратегии активного обучения (AL) для генерации текста,
  • веб-интерфейс для настройки, отслеживания процесса и просмотра результатов,
  • поддержка локальных и облачных языковых моделей, включая OpenAI и Anthropic,
  • поддержка batch API OpenAI — ещё один способ сэкономить на разметке,
  • встроенные инструменты оценки качества моделей.

Разработчики провели серию тестов на четырёх популярных задачах: ответы на вопросы (TriviaQA), решение задач (GSM8K), понимание текста (RACE) и суммаризация (AESLC). Стратегии активного выбора данных, такие как HUDS, HADAS и Facility Location, показали лучшие результаты по сравнению со случайной выборкой.

Оказалось, что чтобы достичь того же качества модели, что и при случайном отборе данных, достаточно размечать всего треть от объёма — это и даёт в итоге трёхкратную экономию.

ATGen объединяет сразу несколько вещей: современные методы активного обучения, автоматическую разметку с помощью больших моделей, удобный интерфейс и инструменты оценки качества. Это упрощает создание кастомных генеративных моделей — даже для небольших команд.

Фреймворк уже выложен на GitHub и распространяется под открытой лицензией MIT.

Минтруду не удалось оспорить штраф за утечку данных

Министерству труда не удалось оспорить в Верховном суде штраф за утечку персональных данных сотрудников и членов их семей. Ранее административное наказание было назначено судами нижестоящих инстанций. Основным аргументом ведомства стало то, что причиной инцидента стала халатность внешнего подрядчика.

Объём утечки оказался относительно небольшим — около 1400 записей. Однако в открытый доступ попали наиболее востребованные на теневом рынке сведения, включая номера паспортов и реквизиты банковских карт.

Мировой судья оштрафовал Минтруд на 100 тыс. рублей. Ведомство попыталось оспорить решение, настаивая, что ответственность за защиту данных лежала на подрядной организации, а значит, само министерство следует считать пострадавшей стороной. В итоге спор дошёл до Верховного суда.

Верховный суд подтвердил, что именно Минтруд является оператором персональных данных и несёт полную ответственность за их защиту, включая контроль за действиями подрядчиков. Суд указал, что ведомство не приняло необходимых мер для обеспечения безопасности инфраструктуры, а о факте утечки узнало лишь после запроса контролирующего органа. Кроме того, был нарушен установленный порядок уведомления о компьютерных инцидентах, что также образует состав административного правонарушения.

Руководитель практики защиты данных Stonebridge Legal Денис Бушнев в комментарии для радиостанции «Коммерсантъ FM» назвал решение Верховного суда логичным продолжением сложившейся правоприменительной практики и разъяснений Роскомнадзора:

«Есть оператор и есть подрядчики оператора — так называемые обработчики или лица, действующие по поручению. Переложить ответственность на таких обработчиков не получится: оператор отвечает за всё. Верховный суд фактически подвёл черту под этим вопросом. Резонанс делу придаёт то, что в нём фигурирует Минтруд. При этом размер штрафа оказался сравнительно небольшим».

«Минтруд, имея возможность провести аудит, ничего не предпринял. Если бы были представлены акты проверок, ответственность можно было бы попытаться переложить на подрядчика, но для этого необходимо выполнить ряд мер. В выигрыше оказываются юристы, которые убеждают клиентов выстраивать корректную систему работы: раньше им не хватало наглядного судебного примера. Теперь он есть — с конкретным штрафом, да ещё в отношении госструктуры. А выигрывают и те, кто заранее выстроил процессы и “подстелил соломку”», — отметила руководитель практики комплаенса юридической фирмы LCH.LEGAL Елена Шершнева.

RSS: Новости на портале Anti-Malware.ru