Автор роликов на YouTube борется с ИИ-плагиатом, подсовывая ботам мусор

Автор роликов на YouTube борется с ИИ-плагиатом, подсовывая ботам мусор

Автор роликов на YouTube борется с ИИ-плагиатом, подсовывая ботам мусор

На YouTube плодятся видеоматериалы, созданные на основе краденого контента с помощью ИИ. Автоматизированный плагиат позволяет мошенникам быстро получать доход с минимальными усилиями, а жертвы сплотились и пытаются дать отпор.

Автор видеоконтента F4mi борется с ИИ-ботами, ворующими расшифровки, вставляя в них большое количество скрытых мусорных данных, Подобное дополнение не мешает пользователям читать тексты, но способно обесценить творение умного помощника, обрабатывающего добычу скрейперов.

Разработанный F4mi метод полагается на использование формата ASS, созданного десятки лет назад для субтитров. Мусор вносится в расшифровки в пропорции 2:1, при этом используются фрагменты из открытых источников либо сгенерированные ИИ выдумки.

Возможности ASS позволяют задать нулевые значения размера и прозрачности вставок, то есть сделать их невидимыми. В результате обработки таких файлов ИИ-пособник мошенников выдает тексты, непригодные для использования.

Автор идеи признает, что более мощные инструменты вроде ChatGPT o1 смогут отфильтровать мусор и правильно воспроизвести оригинал. В этом случае придется еще помудрить над ASS-файлами, чтобы затруднить задачу и таким помощникам.

Поддержки ASS на YouTube не предусмотрено, там отдают предпочтение YTT, но можно использовать конвертер. В мобильной версии YouTube содержимое таких файлов будет отображаться некорректно — в виде черного окна поверх видео.

Изобретательному автору удалось обойти и это препятствие. Был написан Python-скрипт, который прячет мусорные вставки как черный текст на черном фоне. Единственная проблема, которая пока не решена, — это креш, возникающий на слишком тяжелых файлах.

К сожалению, придуманный F4mi трюк не помеха для таких инструментов, как Whisper разработки OpenAI, который сам делает расшифровку аудиозаписей, притом, по отзывам, вполне сносно.

Для macOS появился первый зловред, написанный с помощью ИИ

Специалисты Mosyle обнаружили необычную и довольно тревожную вредоносную кампанию под macOS. И дело тут не только в том, что речь снова идёт о криптомайнере. По данным исследователей, это первый зафиксированный в «дикой природе» macOS-зловред, в коде которого явно прослеживаются следы генеративного ИИ.

На момент обнаружения вредонос не детектировался ни одним крупным антивирусным движком, что само по себе уже неприятно.

И это особенно интересно на фоне предупреждений Moonlock Lab годичной давности — тогда исследователи писали, что на подпольных форумах активно обсуждают использование LLM для написания macOS-зловредов. Теперь это перестало быть теорией.

Кампанию назвали SimpleStealth. Распространяется она через фейковый сайт, маскирующийся под популярное ИИ-приложение Grok. Злоумышленники зарегистрировали домен-двойник и предлагают скачать «официальный» установщик для macOS.

После запуска пользователь действительно видит полноценное приложение, которое выглядит и ведёт себя как настоящий Grok. Это классический приём: фейковая оболочка отвлекает внимание, пока вредонос спокойно работает в фоне и остаётся незамеченным как можно дольше.

При первом запуске SimpleStealth аккуратно обходит защитные функции системы. Приложение просит ввести пароль администратора — якобы для завершения настройки. На самом деле это позволяет снять карантинные ограничения macOS и подготовить запуск основной нагрузки.

С точки зрения пользователя всё выглядит нормально: интерфейс показывает привычный ИИ-контент, ничего подозрительного не происходит.

А внутри — криптомайнер Monero (XMR), который позиционируется как «конфиденциальный и неотслеживаемый». Он работает максимально осторожно:

  • запускается только если macOS-устройство бездействует больше минуты;
  • мгновенно останавливается при движении мыши или вводе с клавиатуры;
  • маскируется под системные процессы вроде kernel_task и launchd.

В итоге пользователь может долго не замечать ни повышенной нагрузки, ни утечки ресурсов.

Самая интересная деталь — код зловреда. По данным Mosyle, он буквально кричит о своём ИИ-происхождении: чрезмерно подробные комментарии, повторяющаяся логика, смесь английского и португальского — всё это типичные признаки генерации с помощью LLM.

Именно этот момент делает историю особенно тревожной. ИИ резко снижает порог входа для киберпреступников. Если раньше создание подобного зловреда требовало серьёзной квалификации, теперь достаточно интернета и правильно сформулированных запросов.

Рекомендация здесь стара как мир, но по-прежнему актуальна: не устанавливайте приложения с сомнительных сайтов. Загружайте софт только из App Store или с официальных страниц разработчиков, которым вы действительно доверяете.

Индикаторы компрометации приводим ниже:

Семейство вредоносов: SimpleStealth

Имя распространяемого файла: Grok.dmg

Целевая система: macOS

Связанный домен: xaillc[.]com

Адрес кошелька:

4AcczC58XW7BvJoDq8NCG1esaMJMWjA1S2eAcg1moJvmPWhU1PQ6ZYWbPk3iMsZSqigqVNQ3cWR8MQ43xwfV2gwFA6GofS3

Хеши SHA-256:

  • 553ee94cf9a0acbe806580baaeaf9dea3be18365aa03775d1e263484a03f7b3e (Grok.dmg)
  • e379ee007fc77296c9ad75769fd01ca77b1a5026b82400dbe7bfc8469b42d9c5 (Grok wrapper)
  • 2adac881218faa21638b9d5ccc05e41c0c8f2635149c90a0e7c5650a4242260b (grok_main.py)
  • 688ad7cc98cf6e4896b3e8f21794e33ee3e2077c4185bb86fcd48b63ec39771e (idle_monitor.py)
  • 7813a8865cf09d34408d2d8c58452dbf4f550476c6051d3e85d516e507510aa0 (working_stealth_miner.py)

RSS: Новости на портале Anti-Malware.ru