Эксперты разработали систему для решения CAPTCHA на сайтах дарквеба

Эксперты разработали систему для решения CAPTCHA на сайтах дарквеба

Эксперты разработали систему для решения CAPTCHA на сайтах дарквеба

Команда исследователей из университетов Аризоны, Джорджии и Флориды представили основанную на машинном обучении систему для решения тестов CAPTCHA. По словам экспертов, их разработка способна обойти 94,4% CAPTCHA на сайтах в дарквебе.

Этот «решатель» специалисты создали с конкретной целью: упростить сбор данных киберразведки, который сейчас требует участия человека для решения CAPTCHA вручную.

Как известно, определённые сайты используют «капчу», чтобы отличить реальных пользователей от ботов. В дарквебе эта технология особенно актуальна, поскольку веб-ресурсам «тёмной сети» необходимо постоянно защищать себя от DDoS-атак.

Есть мнение, что качественная CAPTCHA может создать достаточный барьер, чтобы сдержать ботов конкурентов. Причём каждая площадка использует свою капчу, что затрудняет создание единого инструмента для их обхода.

Именно поэтому сбор важных данных в дарквебе представляет определённую сложность для специалистов по кибербезопасности и при этом ещё обходится дорого — для решения капчи приходится использовать сотрудников.

Чтобы облегчить жизнь исследователям, эксперты разработали систему (PDF), обрабатывающую растровые изображения. Эта система может отличить буквы от цифр, попеременно сравнивая их. Таким образом, размер CAPTCHA никак не повлияет на новый «решатель».

 

Система использует образцы капчи из многих регионов, чтобы учиться отличать мелкие детали: линии и края. В результате разработку не проведёшь изменением размера шрифта, цвета и даже поворотом символов.

 

Авторы солвера выложили его на GitHub, поэтому существует риск использования новой системы и в киберпреступных целях.

ИИ учится задавать вопросы сам себе — и от этого становится умнее

Даже самые продвинутые ИИ-модели пока что во многом лишь повторяют — учатся на примерах человеческой работы или решают задачи, которые им заранее придумали люди. Но что если искусственный интеллект сможет учиться почти как человек — сам задавать себе интересные вопросы и искать на них ответы?

Похоже, это уже не фантазия. Исследователи из Университета Цинхуа, Пекинского института общего искусственного интеллекта (BIGAI) и Университета штата Пенсильвания показали, что ИИ способен осваивать рассуждение и программирование через своеобразную «игру с самим собой».

Проект получил название Absolute Zero Reasoner (AZR). Его идея проста и изящна одновременно. Сначала языковая модель сама придумывает задачи по программированию на Python — достаточно сложные, но решаемые. Затем она же пытается их решить, после чего проверяет себя самым честным способом: запускает код.

 

Если решение сработало — отлично. Если нет — ошибка становится сигналом для обучения. На основе успехов и провалов система дообучает исходную модель, постепенно улучшая и умение формулировать задачи, и способность их решать.

Исследователи протестировали подход на открытой языковой модели Qwen с 7 и 14 миллиардами параметров. Оказалось, что такой «самообучающийся» ИИ заметно улучшает навыки программирования и логического мышления — и в некоторых тестах даже обгоняет модели, обученные на вручную отобранных человеческих данных.

 

По словам аспиранта Университета Цинхуа Эндрю Чжао, одного из авторов идеи, подход напоминает реальный процесс обучения человека:

«Сначала ты копируешь родителей и учителей, но потом начинаешь задавать собственные вопросы. И в какой-то момент можешь превзойти тех, кто тебя учил».

Идея «самоигры» для ИИ обсуждается не первый год — ещё раньше её развивали такие исследователи, как Юрген Шмидхубер и Пьер-Ив Удейер. Но в Absolute Zero особенно интересно то, как растёт сложность задач: чем умнее становится модель, тем более сложные вопросы она начинает ставить перед собой.

«Уровень сложности растёт вместе с возможностями модели», — отмечает исследователь BIGAI Цзилун Чжэн.

Сейчас подход работает только там, где результат можно легко проверить — в программировании и математике. Но в будущем его хотят применить и к более «жизненным» задачам: работе ИИ-агентов в браузере, офисных сценариях или автоматизации процессов. В таких случаях модель могла бы сама оценивать, правильно ли агент действует.

«В теории это может стать путём к суперинтеллекту», — признаёт Чжэн.

RSS: Новости на портале Anti-Malware.ru