Эксперты разработали систему для решения CAPTCHA на сайтах дарквеба

Эксперты разработали систему для решения CAPTCHA на сайтах дарквеба

Эксперты разработали систему для решения CAPTCHA на сайтах дарквеба

Команда исследователей из университетов Аризоны, Джорджии и Флориды представили основанную на машинном обучении систему для решения тестов CAPTCHA. По словам экспертов, их разработка способна обойти 94,4% CAPTCHA на сайтах в дарквебе.

Этот «решатель» специалисты создали с конкретной целью: упростить сбор данных киберразведки, который сейчас требует участия человека для решения CAPTCHA вручную.

Как известно, определённые сайты используют «капчу», чтобы отличить реальных пользователей от ботов. В дарквебе эта технология особенно актуальна, поскольку веб-ресурсам «тёмной сети» необходимо постоянно защищать себя от DDoS-атак.

Есть мнение, что качественная CAPTCHA может создать достаточный барьер, чтобы сдержать ботов конкурентов. Причём каждая площадка использует свою капчу, что затрудняет создание единого инструмента для их обхода.

Именно поэтому сбор важных данных в дарквебе представляет определённую сложность для специалистов по кибербезопасности и при этом ещё обходится дорого — для решения капчи приходится использовать сотрудников.

Чтобы облегчить жизнь исследователям, эксперты разработали систему (PDF), обрабатывающую растровые изображения. Эта система может отличить буквы от цифр, попеременно сравнивая их. Таким образом, размер CAPTCHA никак не повлияет на новый «решатель».

 

Система использует образцы капчи из многих регионов, чтобы учиться отличать мелкие детали: линии и края. В результате разработку не проведёшь изменением размера шрифта, цвета и даже поворотом символов.

 

Авторы солвера выложили его на GitHub, поэтому существует риск использования новой системы и в киберпреступных целях.

Эксперты: за год число вредоносных opensource-компонентов возросло в 11 раз

В 2025 году в компании CodeScoring зарегистрировали 457 тыс. вредоносных библиотек с открытым исходным кодом — в 11 раз больше, чем в предыдущем году. Зафиксировано также 14 тыс. новых уязвимостей в таких компонентах.

По словам специалистов, сохраняют актуальность и более ранние неприятные находки — к примеру, RCE-уязвимость Log4Shell, которая все еще присутствует в 15 тыс. сторонних библиотек. Публикация подобных пакетов грозит атаками на цепочку поставок.

В уходящем году также зафиксировано появление новой, еще более опасной угрозы — самоходного червя Shai Hulud, способного создавать новые репозитории и воровать конфиденциальные данные с CI/CD-платформ.

В связи с бурным ростом популярности ИИ объявился новый вектор атаки — slopsquatting: злоумышленники начали использовать склонность больших языковых моделей (БЯМ, LLM) к галлюцинациям для внедрения в легитимные проекты небезопасного кода.

Из-за этой особенности умный помощник по разработке может ошибиться и вместо легитимной библиотеки предложить для использования вредоносную со схожим названием. По данным CodeScoring, в России ИИ-ассистентов применяют 30% разработчиков, и потенциально опасные галлюцинации происходят у LLM в 20% случаев.

Чтобы защититься от атак на цепочку поставок, эксперты советуют вести тщательный учет компонентов, используемых для сборки софта, при установке библиотек выставлять запрет на исполнение скриптов, а также следовать стандарту ГОСТ Р 56939-2024 и активнее внедрять технологии безопасной разработки.

RSS: Новости на портале Anti-Malware.ru