Мошенники отображали рекламу в Android-приложениях ботам

Мошенники отображали рекламу в Android-приложениях ботам

Мошенники отображали рекламу в Android-приложениях ботам

Интересную кибермошенническую схему использовали для отображения рекламы в приложениях для мобильной операционной системы Android. Оказалось, что некоторые злоумышленники показывали рекламу ботам вместо реальных пользователей.

Занималась этим компания We Purchase Apps, на которую издание BuzzFeed вышло через сотрудницу по имени Натали Андреа. Андреа хотела купить от лица компании Android-приложение Emoji Switcher.

В итоге исследователи выяснили, что We Purchase Apps позиционировалась в качестве рекламного агента, который предлагал услуги подключения мобильных приложений к рекламной сети.

На деле же реклама демонстрировалась ботам, а не живым пользователям. Именно так мошенники пользовались трафиком крупных компаний. Общий доход мошенников составил $75 миллионов в год.

Результаты исследования даже прокомментировала Google — интернет-гигант подтвердил наличие рекламного ботнета, которому, по сведениям компании, удалось заработать около $10 миллионов.

Среди участвовавших в схеме приложений были и очень популярные. Например, EverythingMe, которое скачали 20 миллионов раз с официального магазина Google Play.

Кстати, обращали когда-нибудь внимание на то, что удаленное вами мобильное приложение возникает везде, куда бы вы не отправились в Сети со своего смартфона или планшета? Так вот, это может быть отнюдь не случайным совпадением. Оказалось, что компании стараются использовать iOS и Android для вычисления, какие именно пользователи деинсталлировали недавно приложения.

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru