Баги Facebook открывали доступ к спискам друзей и банковским картам

Баги Facebook открывали доступ к спискам друзей и банковским картам

Баги Facebook открывали доступ к спискам друзей и банковским картам

В прошлом году исследователь безопасности Йосип Франкович обнаружил баги в приложении Facebook, которые открывали доступ к закрытым спискам друзей и частично показывали информацию о банковских картах пользователей. На этой неделе он раскрыл детали обнаружения и исправления уязвимостей.

Франкович анализировал приложение Facebook для Android и обнаружил уязвимость, которая позволила ему получить доступ к списку друзей любого пользователя с помощью специально созданного запроса. Хотя пользователи Facebook могут запретить другим людям видеть своих друзей, уязвимость позволяла получить эту информации, независимо от настроек конфиденциальности.

Для своих мобильных приложений Facebook разработал GraphQL — язык запросов данных с открытым кодом. Запросы GraphQL можно использовать только для приложений Facebook — причем разрешены идентификаторы запросов только из белого списка — и для них требуется токен доступа.

Франкович обнаружил, что можно использовать клиентский токен из приложения Facebook для Android и обойти белый список, отправив запрос, содержащий параметр “doc_id” вместо “query_id”. После этого он стал отправлять запросы GraphQL и увидел, что запрос под названием CSPlaygroundGraphQLFriendsQuery раскрывал список друзей пользователя, чей ID был включен в запрос.

Вторая уязвимость, открытая экспертом, также была связана с GraphQL. Она позволяла потенциальным злоумышленникам получить информацию о платежной карте клиента, привязанной к аккаунту Facebook. Для этого нужно было отправить запрос, содержащий ID целевого пользователя и токен доступа, который можно было получить из приложения Facebook. Эта уязвимость раскрывала первые 6 и последние 4 цифры банковской карты, дату выпуска, тип карты, имя держателя, zip code и страну. Пользователи обычно вводят данные банковских карт на Facebook для оплаты рекламы.

Франкович сообщил Facebook о первой уязвимости 6 октября 2017 года, недостаток был исправлен к середине месяца. Баг с платежными данными обнаружился в феврале того же года и был исправлен в рекордные сроки — за 4 часа 13 минут. В начале этой недели исследователь написал об обнаруженных багах в своем блоге. Франкович не пожелал называть сумму, которую Facebook заплатил ему за обнаружение ошибок.

Ранее в этом году мы писали о том, как киберпреступники взломали Facebook-аккаунт президента Болгарии и о том, как социальная сеть атаковала своих пользователей потоками спама.

«Не снимайте меня»: как случайные прохожие смогут управлять видеосъёмкой

Камеры сегодня повсюду: в смартфонах, умных очках, экшн-камерах и даже в «умных» дверных звонках. Проблема в том, что в кадр регулярно попадают люди, которые вовсе не давали согласия на съёмку. Исследователи из Калифорнийского университета в Ирвайне решили проверить, можно ли это исправить и представили систему BLINDSPOT.

BLINDSPOT (PDF) — это прототип системы, которая позволяет случайным прохожим прямо сигнализировать камере о своих предпочтениях по конфиденциальности.

Без регистрации, без загрузки биометрии в облако и без привязки к личности. Всё работает локально, на устройстве.

Если человек попадает в поле зрения камеры и подаёт сигнал, система находит его лицо, отслеживает его и автоматически размывает изображение ещё до сохранения или передачи видео. Причём BLINDSPOT проверяет, что сигнал действительно исходит от того, чьё лицо находится в кадре — если «география» не сходится, команда просто игнорируется.

Прототип реализовали на обычном смартфоне Google Pixel.

Исследователи протестировали сразу три варианта, как прохожий может «договориться» с камерой:

1. Жесты руками. Самый простой вариант — провести рукой перед лицом, чтобы включить размытие, и повторить жест в обратную сторону, чтобы его отключить. Никакого дополнительного оборудования не нужно. На расстоянии до 1-2 метров система срабатывала почти безошибочно, а реакция занимала меньше 200 миллисекунд.

2. Световой маячок. Во втором сценарии человек носит с собой небольшой LED-маячок, который мигает в заданном шаблоне и передаёт цифровой сигнал камере. Такой способ работает уже на расстоянии до 10 метров в помещении, с точностью около 90% и без ложных срабатываний. Время отклика — чуть больше полсекунды.

3. UWB-метка. Третий вариант использует ultra-wideband — радиотехнологию с очень точным определением расстояния и направления. Камера и метка обмениваются короткими сигналами через Bluetooth и UWB. Этот способ оказался самым стабильным: точность часто превышала 95%, система корректно работала с несколькими людьми сразу и не давала ложных срабатываний.

 

Главный вывод исследователей — управление приватностью «со стороны прохожего» вполне реально даже на обычном смартфоне.

Как и ожидалось, есть нюансы. Во-первых, расстояние: система должна «видеть» лицо. На практике это означает максимум около 10 метров — дальше лица становятся слишком мелкими для надёжного распознавания.

Во-вторых, толпы. Когда в кадре появляется больше восьми человек, производительность падает: растёт задержка, теряются кадры. Это ограничение связано с обработкой видео на устройстве и одинаково проявляется для всех способов сигнализации.

В-третьих, условия съёмки. Яркий солнечный свет мешает световым маячкам, движение в плотной толпе снижает точность жестов. Задержка между сигналом и фактическим размытием может составлять от долей секунды до двух секунд — и в этот момент запись всё ещё идёт.

Наконец, вопрос железа. Два из трёх вариантов требуют дополнительных устройств, которые пока не являются массовыми. Поддержка таких сигналов напрямую со смартфонов — скорее идея на будущее.

RSS: Новости на портале Anti-Malware.ru