Гарда Технологии отделили от МФИ Софт

Гарда Технологии отделили от МФИ Софт

Гарда Технологии отделили от МФИ Софт

На российский рынок информационной безопасности выходит новый вендор - «Гарда Технологии». Компания основана на базе ИБ-направления «МФИ Софт». «Гарда Технологии» аккумулировала в себе экспертизу по разработке и внедрению решений для защиты от внутренних и внешних угроз информационной безопасности.

Офисы «Гарда Технологии» расположены в Москве и Нижнем Новгороде. Все решения компании построены на базе собственной технологической платформы, запатентован ряд уникальных разработок собственного исследовательского центра.  

В продуктовый портфель «Гарда Технологии» вошли решения для защиты от внутренних и внешних угроз информационной безопасности:

  • «Гарда Предприятие» — интеллектуальная DLP-система для защиты информации от утечки и контроля корпоративных каналов коммуникации.
  • «Гарда БД» — система защиты баз данных и веб-приложений с функцией поведенческого анализа.
  • «Гарда Монитор» — система расследования сетевых инцидентов и мониторинга сетевого трафика компании.
  • «Гарда Фильтр» — решение для ограничения доступа к доменным именам, указателям страниц сайтов и сетевым адресам. 
  • «Периметр» — решение для защиты сетей крупных интернет-провайдеров от DDoS-атак.
  • «Антифрод» — группа решений для контроля порядка пропуска трафика на сетях операторов связи. 

Среди пользователей решений «Гарда Технологии» - крупнейшие банки, госструктуры, операторы связи и производственные предприятия. Решения успешно внедряются на всей территории России с 2007 года и занимают лидирующие позиции в своих рыночных нишах. В 2018 году компания «Гарда Технологии» планирует войти в ТОП-10 российских производителей решений информационной безопасности.

Владимир Пономарев, генеральный директор «Гарда Технологии»: 

«В планах новой компании уже в ближайшие годы занять лидерские позиции по разработке решений информационной безопасности в России. Для этого у «Гарды Технологии» есть все возможности. Мы обладаем собственной высокопроизводительной платформой для работы с большими данными, лежащей в основе большинства наших решений. Наши продукты уже сейчас позволяют решать ключевые задачи по защите от внутренних угроз информационной безопасности и защите внешнего периметра для организаций любого масштаба. Мы постоянно работаем над расширением возможностей наших решений и в ближайшем будущем планируем объединить их в единую экосистему, позволяющую полноценно использовать все современные инструменты предотвращения и выявления инцидентов информационной безопасности, в том числе с применением всего спектра методов работы с большими данными».

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru