SearchInform усилила защиту от кражи данных паспортов и банковских карт

SearchInform усилила защиту от кражи данных паспортов и банковских карт

SearchInform усилила защиту от кражи данных паспортов и банковских карт

Компания SearchInform расширила функциональность DLP-системы «Контур информационной безопасности» с помощью технологий распознавания текстов компании ABBYY. Благодаря нововведению, система способна точнее определить в цифровом потоке изображения паспортов, банковских карт, других конфиденциальных документов и данных. 

Новый инструмент, основанный на технологии оптического распознавания текстов (OCR), самостоятельно классифицирует файлы, выделяя среди них персональные данные, которые циркулируют внутри компании. Встроенные классификаторы ABBYY помогают определить любые другие документы установленных образцов: водительские удостоверения, служебные пропуска, дипломы об образовании и др. 

По оценке аналитиков SearchInform, объем сканированных копий в среднем составляет около 30% всех документов. К примеру, в госсекторе сканированные копии составляют около 41,5% документов, в ритейле – 17%, в сфере услуг – 23%, а в банках и телеком-сфере приближаются к 45%. Технология OCR контролирует движение электронных версий документов в корпоративной сети и снижает риск утечек информации.

Раньше DLP-система SearchInform была по умолчанию оснащена технологией OCR другого производителя. Сейчас в модуле SearchServer в качестве движка полнотекстового распознавания используется ABBYY FineReader Engine. Технологии распознавания текстов и алгоритмы классификации изображений компании ABBYY уменьшают необходимость ручной обработки за счет автоматического определения типов персональных данных. Такой способ позволяет провести ретроспективный анализ.

«ABBYY FineReader Engine отличается большой точностью распознавания текста, в чем мы убедились, проведя ряд собственных тестов, – сравнили решение ABBYY и другого разработчика.  ABBYY совершает на 10-12% меньше ошибок при распознании обычного текста и на 30% меньше в работе со сложными изображениями», – прокомментировал Иван Мершков, технический директор SearchInform.

Алгоритмы ABBYY по максимуму используют возможности современных процессоров. Некоторые задачи ABBYY выполняет в 3-4 раза быстрее стандартного OCR, повышая качество распознавания. Разница заметна при обработке многостраничных документов или изображений высокого разрешения. На практике это означает, что в компании повышается защита от профессиональных инсайдеров, которые знакомы с механизмами работы DLP-систем и основательно прячут документы.

«Компаниям крайне важно контролировать данные, связанные с коммерческой тайной или конфиденциальной информацией клиентов. Возможность автоматически выявлять критически важные для бизнеса данные даже в потоке изображений стала неотъемлемой частью современных DLP-систем. С помощью возможностей решения ABBYY, интегрированного в систему SearchInform, компании могут еще эффективнее предотвращать утечки в формате изображений», – отметил Дмитрий Шушкин, заместитель генерального директора ABBYY Россия.

ИИ учится задавать вопросы сам себе — и от этого становится умнее

Даже самые продвинутые ИИ-модели пока что во многом лишь повторяют — учатся на примерах человеческой работы или решают задачи, которые им заранее придумали люди. Но что если искусственный интеллект сможет учиться почти как человек — сам задавать себе интересные вопросы и искать на них ответы?

Похоже, это уже не фантазия. Исследователи из Университета Цинхуа, Пекинского института общего искусственного интеллекта (BIGAI) и Университета штата Пенсильвания показали, что ИИ способен осваивать рассуждение и программирование через своеобразную «игру с самим собой».

Проект получил название Absolute Zero Reasoner (AZR). Его идея проста и изящна одновременно. Сначала языковая модель сама придумывает задачи по программированию на Python — достаточно сложные, но решаемые. Затем она же пытается их решить, после чего проверяет себя самым честным способом: запускает код.

 

Если решение сработало — отлично. Если нет — ошибка становится сигналом для обучения. На основе успехов и провалов система дообучает исходную модель, постепенно улучшая и умение формулировать задачи, и способность их решать.

Исследователи протестировали подход на открытой языковой модели Qwen с 7 и 14 миллиардами параметров. Оказалось, что такой «самообучающийся» ИИ заметно улучшает навыки программирования и логического мышления — и в некоторых тестах даже обгоняет модели, обученные на вручную отобранных человеческих данных.

 

По словам аспиранта Университета Цинхуа Эндрю Чжао, одного из авторов идеи, подход напоминает реальный процесс обучения человека:

«Сначала ты копируешь родителей и учителей, но потом начинаешь задавать собственные вопросы. И в какой-то момент можешь превзойти тех, кто тебя учил».

Идея «самоигры» для ИИ обсуждается не первый год — ещё раньше её развивали такие исследователи, как Юрген Шмидхубер и Пьер-Ив Удейер. Но в Absolute Zero особенно интересно то, как растёт сложность задач: чем умнее становится модель, тем более сложные вопросы она начинает ставить перед собой.

«Уровень сложности растёт вместе с возможностями модели», — отмечает исследователь BIGAI Цзилун Чжэн.

Сейчас подход работает только там, где результат можно легко проверить — в программировании и математике. Но в будущем его хотят применить и к более «жизненным» задачам: работе ИИ-агентов в браузере, офисных сценариях или автоматизации процессов. В таких случаях модель могла бы сама оценивать, правильно ли агент действует.

«В теории это может стать путём к суперинтеллекту», — признаёт Чжэн.

RSS: Новости на портале Anti-Malware.ru