Android-троянцы научились внедряться в системные процессы

Android-троянцы научились внедряться в системные процессы

Android-троянцы научились внедряться в системные процессы

Архитектура вредоносных программ для мобильной платформы Android усложняется с каждым годом: если первые троянцы для этой системы представляли собой довольно примитивные приложения, то нынешние порой не уступают по сложности даже самым изощренным Windows-троянцам.

В феврале 2016 года специалисты компании «Доктор Веб» выявили целый комплект вредоносных приложений для ОС Android, обладающих широчайшим спектром функциональных возможностей.

Этот набор состоит из трех действующих совместно троянцев, получивших наименования Android.Loki.1.origin, Android.Loki.2.origin и Android.Loki.3 соответственно. Первый из них загружается с помощью библиотеки liblokih.so, детектируемой Антивирусом Dr.Web для Android под именем Android.Loki.6. Эта библиотека внедряется в один из системных процессов троянцем Android.Loki.3 — в результате Android.Loki.1.origin получает возможность действовать в системе с привилегиями пользователя system. Android.Loki.1.origin представляет собой службу, обладающую широким набором функций: например, троянец может скачать из официального каталога Google Play любое приложение с помощью специальной ссылки, содержащей указание на учетную запись той или иной партнерской программы, благодаря чему злоумышленники получают возможность извлекать доход, сообщает news.drweb.ru. Среди других возможностей Android.Loki.1.origin стоит отметить следующие:

  • установка и удаление приложений;
  • включение и отключение приложений, а также их компонентов;
  • остановка процессов;
  • демонстрация уведомлений;
  • регистрация приложений как Accessibility Service (службы, отслеживающей нажатия на экран устройства);
  • обновление своих компонентов, а также загрузка плагинов по команде с управляющего сервера.

Вторая вредоносная программа из обнаруженного аналитиками «Доктор Веб» комплекта — Android.Loki.2.origin — предназначена для установки на зараженное устройство различных приложений по команде с управляющего сервера, а также для демонстрации рекламы. Однако обладает этот троянец и шпионскими функциями — при запуске он собирает и отправляет злоумышленникам следующую информацию:

  • IMEI инфицированного устройства;
  • IMSI инфицированного устройства;
  • mac-адрес инфицированного устройства;
  • идентификатор MCC (Mobile Country Code) — мобильный код страны;
  • идентификатор MNC (Mobile Network Code) — код мобильной сети;
  • версия ОС на инфицированном устройстве;
  • значение разрешения экрана;
  • данные об оперативной памяти (общий объем и свободный объем);
  • версия ядра ОС;
  • данные о модели устройства;
  • данные о производителе устройства;
  • версия прошивки;
  • серийный номер устройства.

После отправки этой информации на управляющий сервер троянец получает в ответ конфигурационный файл, содержащий необходимые для его работы данные. Через определенные промежутки времени Android.Loki.2.origin обращается к управляющему серверу для получения заданий и во время каждого сеанса связи дополнительно передает злоумышленникам следующие данные:

  • версия конфигурационного файла;
  • версия сервиса, реализованного троянцем Android.Loki.1.origin;
  • язык операционной системы;
  • страна, указанная в настройках операционной системы;
  • информация о пользовательской учетной записи в сервисах Google.

В ответ Android.Loki.2.origin получает задание либо на установку того или иного приложения (они в том числе могут загружаться из каталога Google Play), либо на отображение рекламы. Нажатие на демонстрируемые троянцем уведомления может привести либо к переходу на определенный сайт, либо к установке приложения. Также по команде киберпреступников Android.Loki.2.origin отсылает на управляющий сервер следующие сведения:

  • список установленных приложений;
  • история браузера;
  • список контактов пользователя;
  • история звонков;
  • текущее местоположение устройства.

Наконец, Android.Loki.3 реализует на инфицированном устройстве две функции: внедряет библиотеку liblokih.so в процесс системной службы system_server и позволяет выполнять команды от имени суперпользователя (root), которые поступают от других троянцев семейства Android.Loki. Фактически, Android.Loki.3 играет роль сервера для выполнения шелл-скриптов: киберпреступники передают троянцу путь к сценарию, который следует выполнить, иAndroid.Loki.3 запускает этот скрипт.

Поскольку троянцы семейства Android.Loki размещают часть своих компонентов в системных папках ОС Android, к которым у антивирусной программы нет доступа, при обнаружении на устройстве любой из таких вредоносных программ самый оптимальный способ ликвидировать последствия заражения – перепрошивка устройства с использованием оригинального образа ОС. Перед выполнением этой процедуры рекомендуется сделать резервную копию всей хранящейся на инфицированном смартфоне или планшете важной информации, а неопытным пользователям следует доверить эту манипуляцию специалисту.

Критическую уязвимость в ядре Linux x86 не замечали с 2020 года

В ядре Linux обнаружили уязвимость, которая тихо жила в системе несколько лет — и притом в одном из самых чувствительных мест. Речь идёт о механизме обработки page fault на архитектуре x86, то есть о коде, который срабатывает каждый раз, когда процессор фиксирует некорректный доступ к памяти.

Проблема тянулась как минимум с 2020 года и была связана с тем, что в ряде сценариев аппаратные прерывания оказывались включёнными в момент, когда ядро ожидало их отключения.

На практике это означало потенциальную нестабильность в крайне редких, но критически важных ситуациях — там, где от предсказуемости поведения ядра зависит вообще всё.

На уязвимость обратил внимание инженер Intel Седрик Син (Cedric Xing), внимательно изучавший код обработки исключений. Как выяснилось, логика в функции do_page_fault() опиралась на устаревшее и, по сути, ошибочное допущение.

В комментариях прямо говорилось, что отследить состояние прерываний на всех возможных ветках выполнения почти невозможно — и разработчики много лет балансировали между «комбинаторным кошмаром» из патчей и попытками аккуратно чинить отдельные случаи.

Но проблема оказалась глубже. Код смешивал два разных понятия — адрес (пользовательский или ядерный) и контекст выполнения. Обычно они совпадают, но не всегда.

Существуют ситуации, когда обращение идёт к памяти ядра, но в пользовательском контексте. В таких случаях некоторые ветки обработчика могли повторно включить прерывания — и вернуть управление туда, где ядро было уверено, что они всё ещё выключены.

Особенно показательной оказалась ветка __bad_area_nosemaphore(), где предпринимается попытка «восстановить правильное состояние», но на деле это происходило не всегда и не одинаково. В результате возникала асимметрия: в зависимости от пути выполнения система могла оказаться в неожиданном состоянии.

В итоге разработчики пришли к простому, но радикальному выводу: латать отдельные ветки бессмысленно. Вместо этого было принято решение гарантированно и безусловно отключать прерывания в одном конкретном месте — прямо перед возвратом управления в низкоуровневый обработчик page fault. Без условий, без проверок, без попыток «угадать» контекст.

Патчи уже вошли в ветку Linux 6.19, а также планируются к бэкпорту в поддерживаемые стабильные версии. Фактически оно устраняет дефект, появившийся ещё во времена Linux 5.8.

RSS: Новости на портале Anti-Malware.ru