BFF — универсальный тестер для проверки безопасности приложений

BFF — универсальный тестер для проверки безопасности приложений

...

Исследователи из университета Карнеги-Меллона разработали упрощенную версию автоматизированной системы для выявления катастрофических ошибок в программных продуктах.



В комплект Basic Fuzzing Framework (BFF) входит виртуальная машина на базе модифицированного дистрибутива Debian GNU/Linux, набор скриптов и файл конфигурации. Для имитации попытки взлома система использует многоцелевую утилиту-исказитель файлов (фаззер) zzuf, которая привносит случайные изменения в эталонные файлы. После открытия искаженного файла в приложении, подвергнутом тестированию, BFF регистрирует дальнейший ход событий. Если провокация привела к сбою или отказу, анализ информации, собранной за время проверки, подскажет его причину.

Технология обнаружения ошибок, взятая за основу американскими разработчиками, помогает определить вероятность таких атак, как переполнение буфера, отказ в обслуживании (DoS), модификация SQL-запроса, XSS. Фаззинг как способ проверки безопасности программных продуктов снискал популярность в профессиональных кругах, но с выходом BFF станет достоянием широких масс. Обзавестись новым инструментом можно на сайте американской Группы быстрого реагирования на компьютерные инциденты.

Источник

ГК Солар запатентовала технологию выявления ботов на уровне HTTPS

ГК «Солар» получила патент на технологию, которая помогает автоматически отличать опасные бот-запросы от действий реальных пользователей ещё на этапе подключения к веб-серверу. Патент был выдан Роспатентом 27 ноября 2025 года. Речь идёт о механизме анализа HTTPS-соединений, который оценивает вероятность того, что запрос был отправлен ботом.

В основе разработки — математическая модель, обученная на статистике поведения легитимных пользователей и автоматических скриптов. Если система считает запрос подозрительным, пользователю предлагается пройти дополнительную проверку. Если нет — соединение устанавливается без задержек.

Подход позволяет отсеивать нежелательную активность до загрузки страницы, не перегружая сайт и не мешая реальным посетителям. Это особенно актуально для интернет-магазинов и других онлайн-ресурсов малого и среднего бизнеса, где даже кратковременные сбои могут напрямую отражаться на выручке.

По оценке разработчиков, технология помогает бороться сразу с несколькими распространёнными проблемами. Среди них — автоматизированный сбор данных, когда боты массово выгружают информацию о товарах и ценах, искажают аналитику и создают почву для мошенничества. Также система позволяет выявлять накрутку кликов и просмотров, автоматические переборы логинов и паролей, разведку перед атаками и попытки перегрузить сайт бот-DDoS-трафиком.

Как поясняют в «Соларе», ключевая идея заключалась в том, чтобы анализировать не содержимое запроса, а его технические параметры, характерные именно для автоматических инструментов. Такой подход остаётся эффективным даже в условиях, когда боты всё лучше маскируются под поведение обычных пользователей.

По словам директора продукта Solar Space Артёма Избаенкова, сегодня на ботов приходится уже более половины мирового интернет-трафика, и значительная часть этой активности связана с вредоносными сценариями. Использование нейросетевой модели позволяет снизить влияние человеческого фактора и повысить точность фильтрации.

Руководитель направления развития облачных технологий ГК «Солар» Дмитрий Лукин отмечает, что разработка выросла из практических задач защиты заказчиков. Основной целью было научиться отсеивать замаскированных ботов на самом раннем этапе, ещё до обработки запроса веб-приложением. После тестирования и доработки модель легла в основу патентованного решения.

В компании добавляют, что технология уже применяется в линейке решений Solar Space — как в облачном формате, так и в развёртываниях on-premise.

RSS: Новости на портале Anti-Malware.ru