InfoWatch развивает лингвистические технологии Traffic Monitor

InfoWatch развивает лингвистические технологии

Российский ИТ-разработчик InfoWatch расширил один из ключевых компонентов своего решения InfoWatch Traffic Monitor - Базу Контентной Фильтрации (БКФ). БКФ является ядром собственной уникальной технологии лингвистического анализа и используется для категоризации информации и детектирования конфиденциальных данных в информационных потоках компании.

Возможности обновленной базы контентной фильтрации отныне позволяют решать задачи как корпоративного, так и государственного масштаба, например, такие как соблюдение исполнения законодательства РФ по борьбе с экстремизмом, коррупционной деятельностью, по противодействию распространению наркотических средств, порнографической продукции и т.п.

Об остроте этих вопросов свидетельствует неумолимая статистика: в период с 2008 по 2009 годы количество экстремистских сайтов в рунете выросло в 5 раз. По данным, опубликованным на сайте Российской газеты, Россия занимает второе место в Сети после США по распространению порнографических сайтов. Ситуация с коррупцией в России тоже оставляет желать лучшего.

Не секрет, что довольно часто нелигитимный контент распространяется сотрудниками компаний за счет работодателя. С этой угрозой и борется InfoWatch Traffic Monitor. Не имеющие аналогов в мире базы контентной фильтрации позволяют регулировать обращение подобной противозаконной информации. Данные БКФ содержат более 4000 терминов, распределенных по таким категориям, как коррупция, наркотики, терроризм, проституция, порнография и др. С помощью этих баз можно выявлять в информационных потоках организации как определенные термины, так и сложные цепочки слов, а также категоризировать полученные данные по областям: например, информация экстремистского толка, данные о коррупционной деятельности, сведения, относящиеся к распространению порнографии, наркотиков и т.п.

При том, что большая часть такого рода информации не создается в организациях специально и не хранится в определенных местах в корпоративной сети, а создается злоумышленниками спонтанно и почти сразу уходит из организации во внешний мир, единственная возможность отследить и пресечь использование ресурсов компании в противоправных целях – анализ информации в режиме онлайн.

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

Мультиагентная система взяла на себя треть задач SOC в Yandex Cloud

Yandex Cloud сообщила, что автоматизировала значительную часть рутинных задач в своём центре мониторинга безопасности (SOC), внедрив мультиагентную систему на базе ИИ. По данным компании, около 39% операций, которые раньше занимали существенную долю рабочего времени аналитиков, теперь выполняют ИИ-помощники. Речь идёт о разборе алертов, первичном анализе инцидентов и поиске данных во внутренних базах.

Внутри SOC несколько ИИ-агентов работают параллельно: один сортирует входящие уведомления, другой перепроверяет данные и выявляет ошибки.

Такой подход позволяет снизить риск некорректных выводов и ускорить фильтрацию ложных срабатываний. По оценкам компании, время на обработку некорректных оповещений сократилось на 86%.

За два года Yandex Cloud прошла путь от экспериментов с ИИ в SOC до полноценной промышленной эксплуатации. Значимую роль сыграли RAG-технологии, которые позволяют моделям работать с актуальными документами и накопленной базой инцидентов. Мультиагентный подход, в свою очередь, сделал возможным разделить задачи между специализированными помощниками, способными учитывать контекст крупных корпоративных инфраструктур.

По словам Евгения Сидорова, директора по информационной безопасности Yandex Cloud, система помогает ускорять обнаружение угроз и автоматизировать обработку данных киберразведки. Он отмечает, что современные SOC-команды всё чаще работают на стыке ИБ и инструментов ИИ.

Мультиагентная система используется не только внутри компании, но и доступна клиентам облачной платформы — в частности, в сервисах Detection and Response и Security Deck. Их уже применяют организации из разных отраслей, включая финтех, здравоохранение и страхование, для автоматизации части процессов мониторинга.

ИИ-помощник, встроенный в сервисы, может разбирать инциденты пошагово, анализировать индикаторы компрометации и артефакты в контексте облачной инфраструктуры, а также предлагать варианты реагирования. Он также собирает дополнительные данные, например по IP-адресам, и формирует рекомендации по предотвращению дальнейших угроз.

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

RSS: Новости на портале Anti-Malware.ru