97% компаний в России внедряют ИИ, но 54% не видят его ценности

97% компаний в России внедряют ИИ, но 54% не видят его ценности

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

287 расширений для Chrome с 37 млн шпионили за пользователями

Исследователи безопасности обнаружили 287 расширений для Google Chrome, которые, по их данным, тайно отправляли данные о посещённых пользователями сайтах на сторонние серверы. Суммарно такие расширения были установлены около 37,4 млн раз, что равно примерно 1% мировой аудитории Chrome.

Команда специалистов подошла к проверке не по описаниям в магазине и не по списку разрешений, а по фактическому сетевому поведению.

Для этого исследователи запустили Chrome в контейнере Docker, пропустили весь трафик через MITM-прокси и начали открывать специально подготовленные URL-адреса разной длины. Идея была простой: если расширение «безобидное» — например, меняет тему или управляет вкладками — объём исходящего трафика не должен расти вместе с длиной посещаемого URL.

А вот если расширение передаёт третьей стороне полный адрес страницы или его фрагменты, объём трафика начинает увеличиваться пропорционально размеру URL. Это измеряли с помощью собственной метрики. При определённом коэффициенте расширение считалось однозначно «сливающим» данные, при более низком — отправлялось на дополнительную проверку.

 

Работа оказалась масштабной: на автоматическое сканирование ушло около 930 процессорных дней, в среднем по 10 минут на одно расширение. Подробный отчёт и результаты опубликованы в открытом репозитории на GitHub, хотя авторы намеренно не раскрыли все технические детали, чтобы не облегчать жизнь разработчикам сомнительных аддонов.

Среди получателей данных исследователи называют как крупные аналитические и брокерские экосистемы, так и менее известных игроков. В отчёте фигурируют, в частности, Similarweb, Big Star Labs (которую авторы связывают с Similarweb), Curly Doggo, Offidocs, а также ряд других компаний, включая китайские структуры и небольших брокеров.

Проблема не ограничивается абстрактной «телеметрией». В URL могут содержаться персональные данные, ссылки для сброса паролей, названия внутренних документов, административные пути и другие важные детали, которые могут быть использованы в целевых атаках.

 

Пользователям советуют пересмотреть список установленных расширений и удалить те, которыми они не пользуются или которые им незнакомы. Также стоит обращать внимание на разрешение «Читать и изменять данные на всех посещаемых сайтах» — именно оно открывает путь к перехвату URL.

RSS: Новости на портале Anti-Malware.ru