Число DDoS-атак на российские игровые сервисы возросло в четыре раза

Число DDoS-атак на российские игровые сервисы возросло в четыре раза

Число DDoS-атак на российские игровые сервисы возросло в четыре раза

В 2025 году DDoS-Guard зафиксировала 2,5 млн инцидентов на территории России — лишь на 1,6% больше, чем в 2024-м. Особо эксперты отметили учащение DDoS-атак на игровые порталы и серверы (на 310%), а также на госсервисы (почти на 250%).

Незначительный рост общего показателя по DDoS, по словам аналитиков, связан с тем, что они перестали учитывать хактивистские атаки. В статистику также не вошли мелкие, не критичные инциденты и атаки на ресурсы без спецзащиты, которые тоже участились.

 

Подавляющее большинство (80%) DDoS-атак, как и в 2024 году, пришлось на уровень приложений, однако их плотность заметно увеличилась. В ходе самой мощной атаки L7 эксперты насчитали 859 млн вредоносных запросов.

В разделении по областям хозяйственной деятельности лидерами по числу инцидентов остались телеком и финансы. Бизнес опустился с 3-го на 5-е место, пропустив вперед госсектор и игровые сервисы.

 

Комментируя новую статистику, Денис Сивцов, возглавляющий в DDoS-Guard направление защиты сети на уровне L3-4, объяснил высокую активность дидосеров в игровой индустрии ростом рынка:

«Мы видим колоссальный прирост атак на игровые сервисы, потому что индустрия развивается, в нее вливаются огромные деньги — за новые игровые серверы часто ведется жесткая конкурентная борьба, где DDoS-атаки часто выступают как оружие, чтобы переманивать аудиторию. Дополнительно следует отметить, что в игровых сервисах часто используются собственные самописные сетевые протоколы, поэтому многие стандартные меры защиты не работают там должным образом».

В отчетный период существенно возросла средняя продолжительность DDoS-атак. Большинство зафиксированных инцидентов длились от 20 минут до 1 часа.

При этом применялись различные тактики. В I квартале наблюдались высокопараллельные атаки: злоумышленники несильно, но настойчиво долбили по множеству мелких ресурсов одного владельца. В других случаях DDoS-удар был очень мощный, но кратковременный, с последующей сменой вектора (видимо, из-за отсутствия искомого эффекта).

За год также в полтора раза возросла распределенность атак. Рекорд по числу источников мусорного потока поставил крупнейший IoT-ботнет: в проведенной с его участием атаке было задействовано свыше 2 млн уникальных IP. В разделении по странам наибольшее количество источников вредоносного трафика было выявлено в США, России и Индонезии.

ИИ научился выявлять депрессию по голосовым сообщениям в WhatsApp

Учёные показали, что депрессию можно распознать буквально «по голосу» — и для этого не нужны ни долгие опросники, ни визит к врачу. Достаточно короткого голосового сообщения в WhatsApp (принадлежит Meta, признанной экстремистской и запрещенной в России).

Исследователи из Медицинской школы Санта-Каса-де-Сан-Паулу и компании Infinity Doctors разработали медицинскую языковую модель, которая с высокой точностью определяет наличие депрессивного расстройства по аудиосообщениям.

Результаты работы опубликованы 21 января 2026 года в открытом журнале PLOS Mental Health.

В эксперименте модель анализировала короткие голосовые сообщения, где участники просто рассказывали, как прошла их неделя. И результат оказался неожиданным: у женщин с диагностированной депрессией точность распознавания превысила 91%.

Это один из лучших показателей среди подобных исследований, особенно с учётом того, что речь идёт о бытовых сообщениях, а не специально записанных медицинских интервью.

Для обучения и тестирования использовались два набора данных с WhatsApp-аудио от носителей португальского. В них вошли записи пациентов с подтверждённым диагнозом «большое депрессивное расстройство» и контрольной группы без депрессии.

Часть сообщений была максимально простой — участникам предлагали досчитать от одного до десяти, другая часть — более естественной: свободный рассказ о прошедшей неделе.

Лучше всего модель справлялась именно со «спонтанной речью». У мужчин точность в этом же сценарии оказалась ниже — около 75%, что авторы связывают с меньшим числом мужских голосов в обучающей выборке и возможными различиями в речевых паттернах. При анализе простого счёта до десяти разница между полами почти исчезала: точность составляла около 80% у женщин и чуть меньше у мужчин.

По словам авторов, модель улавливает тонкие акустические признаки — темп речи, интонации, паузы, — которые сложно заметить человеку, но хорошо видит машинное обучение. И главное — всё это происходит в привычном для людей формате повседневного общения.

Исследователи считают, что при дальнейшем развитии технология может лечь в основу недорогих и удобных инструментов раннего скрининга депрессии, не требующих сложных процедур и не нарушающих повседневные привычки пользователей.

Как отметил старший автор исследования Лукас Маркес, «незаметные акустические особенности обычных голосовых сообщений могут с неожиданной точностью указывать на депрессивные состояния».

Напомним, в недавнем исследовании метаданные WhatsApp показали: мы плохо понимаем, как ведём себя в чатах.

RSS: Новости на портале Anti-Malware.ru