GPT-5 стал более чутким: модель учится поддерживать в трудные моменты

GPT-5 стал более чутким: модель учится поддерживать в трудные моменты

GPT-5 стал более чутким: модель учится поддерживать в трудные моменты

Компания OpenAI выпустила обновление для модели GPT-5 Instant, сделав её заметно более внимательной к эмоциональному состоянию пользователей. Теперь ИИ способен распознавать признаки стресса или переживаний и реагировать на них более деликатно, поддерживая юзеров.

Как сообщает BleepingComputer, обновлённая версия модели создавалась при участии специалистов в области психического здоровья.

Цель обновления — сделать GPT-5 не просто умным собеседником, но и тем, кто может вовремя предложить помощь и направить на ресурсы поддержки, если это необходимо.

В OpenAI поясняют, что модель теперь точнее распознаёт признаки эмоционального дистресса — например, тревогу, подавленность или отчаяние — и отвечает языком, который помогает человеку почувствовать опору. При этом GPT-5 может мягко предложить обратиться к кризисным службам, если ситуация выглядит серьёзной.

Ранее пользователи жаловались, что GPT-5 кажется слишком «сухим» и «прагматичным» по сравнению с предыдущей моделью GPT-4o, которая воспринималась более человечной и сочувствующей. Теперь OpenAI обещает, что новая версия станет балансом между поддержкой и рациональностью.

Если пользователь выберет GPT-5 Auto или другой вариант без рассуждений, ChatGPT автоматически перенаправит разговор в GPT-5 Instant, чтобы быстрее предоставить полезный и чуткий ответ. При этом система продолжит сообщать, какая модель активна в данный момент — прозрачность сохранится.

Обновление GPT-5 Instant уже начало постепенно распространяться среди пользователей ChatGPT. По задумке OpenAI, этот апдейт сделает общение с ИИ не только информативным, но и по-настоящему человечным.

Ранее мы писали, что OpenAI вводит проверку возраста в ChatGPT для защиты подростков. В компании вспомнили трагический случай: весной подросток несколько часов обсуждал с чат-ботом тему суицида, а затем покончил с собой. Семья подала в суд, и OpenAI решила усилить меры безопасности.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

ИИ пишет коды, как талантливый джуниор, и это подрывает безопасность софта

Как выяснили израильские специалисты, сгенерированные ИИ коды по плотности уязвимостей сравнимы с рукописными творениями, однако содержат структурные изъяны, способные повысить риски для введенных в эксплуатацию систем.

В рамках исследования в OX Security изучили содержимое более 300 репозиториев софта, в том числе 50 проектов, созданных с помощью GitHub Copilot, Cursor или Claude.

Многие сгенерированные ИИ коды выглядели чистыми и функциональными: казалось, умный помощник повел себя как одаренный начинающий программист, к тому же обладающий феноменальным быстродействием.

К сожалению, его участие свело на нет аудит кода, отладку и командный надзор, с которыми современные безопасники и так плохо справляются из-за возросшей нагрузки. Такие корпоративные службы, по данным экспертов, в среднем одновременно обрабатывают по полмиллиона алертов, оценивая степень важности и принимая дополнительные меры защиты.

Применение ИИ ускорило темпы создания софта, однако такие разработчики зачастую развертывают свои программы, не имея представления о защите хранимых данных и доступа, в том числе через интернет. Справедливости ради стоит отметить, что в подобную ловушку может попасть и профессиональный кодер.

«Функциональные приложения теперь можно выкатывать быстрее, но их не успевают тщательно проверять, — комментирует Эяль Пац (Eyal Paz), вице-президент OX Security по исследовательской работе. — Уязвимые системы вводятся в эксплуатацию с беспрецедентной скоростью, однако надлежащий аудит кода невозможно масштабировать до такой степени, чтобы он соответствовал новым темпам».

Суммарно эксперты выявили десять потенциально опасных недостатков, которые часто встречаются в творениях ИИ-помощников программиста:

  • множественные, излишние комментарии в коде, затрудняющие проверку (в 90-100% случаев);
  • фиксация на общепринятых правилах программирования, препятствующая созданию более эффективных и новаторских решений (80–90%);
  • создание одноразовых кодов, без возможности перепрофилирования под иные задачи (80–90%);
  • исключение рефакторинга (80–90%);
  • повторяющиеся баги, которые потом приходится многократно фиксить, из-за невозможности многократного использования кода (70-80%);
  • отсутствие осведомленности о специфике среды развертывания, приводящее к отказу кода, исправно функционирующего на стадии разработки (60-70%);
  • возврат к монолитным, сильно связанным архитектурам вместо уже привычных, удобных в сопровождении микросервисов (40-50%);
  • фейковое покрытие тестами всех интересующих значений — вместо оценки реальной логики ИИ выдает бессмысленные метрики, создающие ложное чувство уверенности в результатах (40-50%);
  • создание кодов с нуля вместо добавления обкатанных библиотек и SDK, что повышает риски привнесения ошибок (40-50%);
  • добавление логики для порожденных галлюцинациями сценариев, повышающее расход ресурсов и снижающее производительность (20-30%).

Поскольку традиционные методы обеспечения безопасности кодов не работают при использовании ИИ, авторы исследования (доступ к полнотекстовому отчету требует регистрации) рекомендуют в таких случаях принять следующие меры:

  • отказаться от аудита кодов и вместо этого привнести аспект безопасности в процесс разработки (подход Secure by Design);
  • перераспределить роли и зоны ответственности — ИИ работает над реализацией, профессионалы концентрируют внимание на архитектуре, контролируют соблюдение требований безопасности, принимают решения по вопросам, требующим опыта и знания контекста;
  • заставить ИИ блюсти интересы безопасности — вставлять соответствующие инструкции в промпты, вводить архитектурные ограничения, интегрировать автоматически выполняемые правила в рабочие процессы, чтобы не пришлось устранять огрехи пост фактум;
  • применять ИИ-средства обеспечения безопасности, сравнимые по быстродействию с такими же помощниками по разработке.

По прогнозу «Монк Дидижтал Лаб», расширение использования генеративного ИИ в российских разработках к концу текущего года приведет к увеличению количества сбоев ИТ-инфраструктуры на 15-20% по сравнению с уровнем 2023-го.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru