Тесты показали слабые места ChatGPT в научных заметках

Тесты показали слабые места ChatGPT в научных заметках

Тесты показали слабые места ChatGPT в научных заметках

Американская ассоциация содействия развитию науки (AAAS) решила проверить, может ли ChatGPT писать короткие научные заметки в стиле SciPak — это такие специальные брифы для журналистов, которые обычно готовит команда при журнале Science и сервисе EurekAlert.

Эксперимент длился целый год: с декабря 2023-го по декабрь 2024-го журналисты давали модели по одному–двум сложным научным исследованиям в неделю.

Задача была простая — пересказать их так, чтобы получилось удобно для коллег-журналистов: минимум терминов, чёткая структура и понятный контекст. В итоге ChatGPT обработал 64 работы.

Результат? В целом модель научилась «копировать» форму SciPak-заметки, но не дотянула по содержанию. По словам автора исследования, журналистки AAAS Абигейл Айзенштадт, тексты ChatGPT были слишком упрощёнными и часто неточными. Приходилось буквально перепроверять каждый факт, так что времени это отнимало не меньше, чем написать заметку с нуля.

 

Цифры тоже говорят сами за себя. Когда редакторов спросили, могли бы такие резюме затеряться среди настоящих SciPak-брифов, средняя оценка составила всего 2,26 балла из 5. «Увлекательность» текстов оценили ещё ниже — 2,14. И лишь одна работа за весь год получила от журналиста высший балл.

Чаще всего ChatGPT путал корреляцию и причинно-следственные связи, забывал упоминать важные ограничения исследований (например, что мягкие актуаторы работают очень медленно) и иногда слишком рассыпался в похвалах про «прорывы» и «новизну».

Авторы эксперимента подытожили: пока что ChatGPT не соответствует стандартам SciPak. Но полностью ставить крест на идее они не стали. AAAS отмечает, что к тестам можно вернуться, если модель серьёзно обновится. А в августе, напомним, как раз вышла GPT-5, в которой, к сожалению, нашли уязвимость.

В R-Vision SGRC появилась возможность управления операционными рисками

R-Vision сообщила о расширении функциональности системы R-Vision SGRC. В обновлённой версии добавлены новые инструменты для управления рисками информационной безопасности и операционными рисками в целом. Новый функционал ориентирован прежде всего на организации с высокой регуляторной нагрузкой — банки, страховые и другие финансовые компании.

Для них управление рисками напрямую связано с устойчивостью бизнеса и выполнением требований регуляторов. Впервые обновлённую версию продукта представят на Уральском форуме «Кибербезопасность в финансах».

В основе изменений — подход, при котором каждый риск рассматривается как отдельный объект со своим жизненным циклом. Он фиксируется в момент выявления и обрабатывается индивидуально: с собственным воркфлоу, ответственными и сроками.

Такой механизм не зависит от общего цикла периодического пересмотра и позволяет выстраивать непрерывную работу с рисками. Если меняются исходные параметры или статус мероприятий по их снижению, система инициирует переоценку и направляет риск на дополнительный анализ.

При анализе система автоматически дополняет данные бизнес-контекстом, доступным в организации. Например, учитывается ценность актива и его роль в бизнес-процессах. Это реализовано через интеграции со смежными информационными системами и должно помочь более точно оценивать приоритеты.

Для упрощения запуска предусмотрены преднастроенный воркфлоу и типовая методика оценки операционных рисков, разработанная R-Vision. При необходимости её можно адаптировать под требования конкретной компании или создать собственную методику с помощью встроенного конструктора.

По сути, с расширением функциональности R-Vision SGRC выходит за рамки исключительно ИБ-рисков и становится инструментом для комплексного управления рисками на уровне всей организации.

RSS: Новости на портале Anti-Malware.ru